Whereas low-level sensory processes can be linked to macroanatomy with great confidence, the degree to which high-level cognitive processes map onto anatomy is less clear. If function respects anatomy, more accurate intersubject anatomical registration should result in better functional alignment. Here, we use auditory functional magnetic resonance imaging and compare the effectiveness of affine and nonlinear registration methods for aligning anatomy and functional activation across subjects. Anatomical alignment was measured using normalized cross-correlation within functionally defined regions of interest. Functional overlap was assessed using t-statistics from the group analyses and the degree to which group statistics predict high and consistent signal change in individual data sets. In regions related to early stages of auditory processing, nonlinear registration resulted in more accurate anatomical registration and stronger functional overlap among subjects compared with affine. In frontal and temporal areas reflecting high-level processing of linguistic meaning, nonlinear registration also improved the accuracy of anatomical registration. However, functional overlap across subjects was not enhanced in these regions. Therefore, functional organization, relative to anatomy, is more variable in the frontal and temporal areas supporting meaning-based processes than in areas devoted to sensory/perceptual auditory processing. This demonstrates for the first time that functional variability increases systematically between regions supporting lower and higher cognitive processes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhr205DOI Listing

Publication Analysis

Top Keywords

anatomical registration
12
nonlinear registration
12
functional overlap
12
cognitive processes
8
functional
8
auditory processing
8
overlap subjects
8
frontal temporal
8
temporal areas
8
registration
6

Similar Publications

Background: The outcome of coronary artery bypass grafting (CABG) depends on several factors, including the quality of the distal anastomoses to the coronary arteries. Early graft failure may be caused by, e.g.

View Article and Find Full Text PDF

Background: Devices that help educate young doctors and enable safe, minimally invasive surgery are needed. Eureka is a surgical artificial intelligence (AI) system that can intraoperatively highlight loose connective tissues (LCTs) in the dissected layers and nerves in the surgical field displayed on a monitor. In this study, we examined whether AI navigation (AIN) with Eureka can assist trainees in recognizing nerves during colorectal surgery.

View Article and Find Full Text PDF

While MRI has become the imaging modality of choice for intracranial meningiomas, no radiologic reporting guidance exists to date that relies on a systematic collection of information relevant to the core medical disciplines involved in the management of these patients. To address this issue, a nationwide expert survey was conducted in Germany. A literature-based catalog of potential reporting elements for MRI examinations of meningioma patients was developed interdisciplinarily.

View Article and Find Full Text PDF

Background: Menisci, one of the most important anatomical structures of the knee joint, plays a role in load transfer, stability, shock absorption, prevention of articular cartilage degeneration, and proprioception. Type I collagen, the main component of the meniscus, and type II collagen fibers play an important role in the stability of the knee joint. This study aimed to evaluate the effects of Naturagen® 4 Joint product containing type I, II, and III collagen on pain, quality of life, and physical functions in patients with meniscopathy.

View Article and Find Full Text PDF

Physical activity (PA) reduces the risk of negative mental and physical health outcomes in older adults. Traditionally, PA intensity is classified using METs, with 1 MET equal to 3.5 mL O·min·kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!