5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons.

Cereb Cortex

Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (IDIBAPS), 08036 Barcelona, Spain.

Published: July 2012

5-HT(1A) receptors (5-HT1AR) are expressed by pyramidal and γ-aminobutyric acidergic (GABAergic) neurons in medial prefrontal cortex (mPFC). Endogenous serotonin inhibits mPFC pyramidal neurons via 5-HT1AR while 5-HT1AR agonists, given systemically, paradoxically excite ventral tegmental area-projecting pyramidal neurons. This enhances mesocortical dopamine function, a process involved in the superior efficacy of atypical antipsychotic drugs on negative and cognitive symptoms of schizophrenia. Moreover, the 5-HT1AR-induced increase of pyramidal discharge may also contribute to the maintenance of activity patterns required for working memory, impaired in schizophrenia. Given the importance of these processes, we examined the neurobiological basis of pyramidal activation through 5-HT1AR using the prototypical agent 8-OH-DPAT. (±)8-OH-DPAT (7.5 μg/kg i.v.) increased discharge rate and c-fos expression in rat mPFC pyramidal neurons. Local blockade of GABA(A) inputs with gabazine (SR-95531) avoided (±)8-OH-DPAT-induced excitations of pyramidal neurons. Moreover, (±)8-OH-DPAT administration reduced the discharge rate of mPFC fast-spiking GABAergic interneurons at doses exciting pyramidal neurons. Activation of other 5-HT1AR subpopulations (raphe nuclei or hippocampus) does not appear to contribute to pyramidal excitations. Overall, the present data suggest a preferential action of (±)8-OH-DPAT on 5-HT1AR in GABAergic interneurons. This results in pyramidal disinhibition and subsequent downstream excitations of subcortical structures reciprocally connected with PFC, such as midbrain dopaminergic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhr220DOI Listing

Publication Analysis

Top Keywords

pyramidal neurons
20
pyramidal
11
prefrontal cortex
8
preferential action
8
mpfc pyramidal
8
activation 5-ht1ar
8
discharge rate
8
gabaergic interneurons
8
neurons
7
5-ht1ar
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!