Secondary structure is required for 3' splice site recognition in yeast.

Nucleic Acids Res

Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.

Published: December 2011

Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3' splice site (3'ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3'ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3'ss distance and masked potential 3'ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3'ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3'ss recognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3239191PMC
http://dx.doi.org/10.1093/nar/gkr662DOI Listing

Publication Analysis

Top Keywords

secondary structure
8
splice site
8
cof1 intron
8
splicing
5
3'ss
5
structure required
4
required splice
4
site recognition
4
recognition yeast
4
yeast higher
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!