Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes.

Philos Trans A Math Phys Eng Sci

Centre for Computational Neuroscience and Cognitive Robotics, School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Published: October 2011

Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263777PMC
http://dx.doi.org/10.1098/rsta.2011.0080DOI Listing

Publication Analysis

Top Keywords

neural population
12
magnetic resonance
8
resonance imaging
8
brain activity
8
population model
8
fmri bold
8
model
5
model-based integration
4
integration co-registered
4
co-registered electroencephalography/functional
4

Similar Publications

Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.

View Article and Find Full Text PDF

"I see, I forget, I read aloud, I remember, and when I do read purposefully by writing it, I do not forget it." This phenomenon is known as "interoception" and refers to the sensing and interpretation of internal body signals, allowing the brain to communicate with various body systems. Dysfunction in interoception is associated with cardiovascular disorders.

View Article and Find Full Text PDF

In this study, we developed an Evidential Ensemble Neural Network based on Deep learning and Diffusion MRI, namely DDEvENet, for anatomical brain parcellation. The key innovation of DDEvENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. To do so, we design an evidence-based ensemble learning framework for uncertainty-aware parcellation to leverage the multiple dMRI parameters derived from diffusion MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!