HtrA family proteins play a central role in protein quality control in the bacterial periplasmic space. DegQ-like proteases, a group of bacterial HtrA proteins, are characterized by a short LA loop as compared with DegP-like proteases, and are found in many bacterial species. As a representative of the DegQ-like proteases, we report that Escherichia coli DegQ exists in vivo primarily as a trimer (substrate-free) or dodecamer (substrate-containing). Biochemical analysis of DegQ dodecamers revealed that the major copurified protein substrate is OmpA. Importantly, wild-type DegQ exhibited a much lower proteolytic activity, and thus higher chaperone-like activity, than DegP. Furthermore, using cryo-electron microscopy we determined high-resolution structures of DegQ 12- and 24-mers in the presence of substrate, thus revealing the structural mechanism by which DegQ moderates its proteolytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2011.06.013DOI Listing

Publication Analysis

Top Keywords

degq-like proteases
12
escherichia coli
8
coli degq
8
representative degq-like
8
proteases bacterial
8
bacterial htra
8
htra family
8
family proteins
8
proteolytic activity
8
degq
6

Similar Publications

HtrA family proteins play a central role in protein quality control in the bacterial periplasmic space. DegQ-like proteases, a group of bacterial HtrA proteins, are characterized by a short LA loop as compared with DegP-like proteases, and are found in many bacterial species. As a representative of the DegQ-like proteases, we report that Escherichia coli DegQ exists in vivo primarily as a trimer (substrate-free) or dodecamer (substrate-containing).

View Article and Find Full Text PDF

The degQ and degS genes of Escherichia coli encode proteins of 455 and 355 residues, respectively, which are homologs of the DegP protease. The purified DegQ protein has the properties of a serine endoprotease and is processed by the removal of a 27-residue amino-terminal signal sequence. A plasmid expressing degQ rescues the temperature-sensitive phenotype of a strain bearing the degP41 deletion, implying that DegQ, like DegP, functions as a periplasmic protease in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!