AI Article Synopsis

  • The study investigates the degeneration of white matter (WM) neural networks in amyotrophic lateral sclerosis (ALS) by using advanced neuroimaging techniques, particularly MRI Diffusion Tensor Imaging (DTI).
  • Researchers hypothesized that changes in structural connectivity of the primary motor and sensory cortex would improve understanding of motor neuron involvement in ALS; they collected data from 15 ALS patients and 20 control subjects through specialized imaging.
  • Results showed a significant decrease in mean fractional anisotropy (FA) in several motor pathways in ALS patients, indicating compromised connectivity between different brain regions related to motor function.

Article Abstract

Although the pathogenesis of amyotrophic lateral sclerosis (ALS) is uncertain, there is mounting neuroimaging evidence to suggest a mechanism involving the degeneration of multiple white matter (WM) motor and extramotor neural networks. This insight has been achieved, in part, by using MRI Diffusion Tensor Imaging (DTI) and the voxelwise analysis of anisotropy indices, along with DTI tractography to determine which specific motor pathways are involved with ALS pathology. Automated MRI structural connectivity analyses, which probe WM connections linking various functionally discrete cortical regions, have the potential to provide novel information about degenerative processes within multiple white matter (WM) pathways. Our hypothesis is that measures of altered intra- and interhemispheric structural connectivity of the primary motor and somatosensory cortex will provide an improved assessment of corticomotor involvement in ALS. To test this hypothesis, we acquired High Angular Resolution Diffusion Imaging (HARDI) scans along with high resolution structural images (sMRI) on 15 patients with clinical evidence of upper and lower motor neuron involvement, and 20 matched control participants. Whole brain probabilistic tractography was applied to define specific WM pathways connecting discrete corticomotor targets generated from anatomical parcellation of sMRI of the brain. The integrity of these connections was interrogated by comparing the mean fractional anisotropy (FA) derived for each WM pathway. To assist in the interpretation of results, we measured the reproducibility of the FA summary measures over time (6months) in control participants. We also incorporated into our analysis pipeline the evaluation and replacement of outlier voxels due to head motion and physiological noise. When assessing corticomotor connectivity, we found a significant reduction in mean FA within a number of intra- and interhemispheric motor pathways in ALS patients. The abnormal intrahemispheric pathways include the corticospinal tracts involving the left and right precentral gyri (lh.preCG, rh.preCG) and brainstem (bs); right postcentral gyrus (rh.postCG) and bs; lh.preCG and left posterior cingulate gyrus (lh.PCG); rh.preCG and right posterior cingulate gyrus (rh.PCG); and the rh.preCG and right paracentral gyrus (rh.paraCG). The abnormal interhemispheric pathways included the lh.preCG and rh.preCG; lh.preCG and rh.paraCG; lh.preCG and right superior frontal gyrus (rh.supFG); lh.preCG and rh.postCG; rh.preCG and left paracentral gyrus (lh.paraCG); rh.preCG and left superior frontal gyrus (lh.supFG); and the rh.preCG and left caudal middle frontal gyrus (lh.caudMF). The reproducibility of the measurement of these pathways was high (variation less than 5%). Maps of the outlier rejection voxels, revealed clusters within the corpus callosum and corticospinal projections. This finding highlights the importance of correcting for motion artefacts and physiological noise when studying clinical populations. Our novel findings, many of which are consistent with known pathology, show extensive involvement and degeneration of multiple corticomotor pathways in patients with upper and lower motor neuron signs and provide support for the use of automated structural connectivity techniques for studying neurodegenerative disease processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2011.08.054DOI Listing

Publication Analysis

Top Keywords

structural connectivity
16
intra- interhemispheric
12
frontal gyrus
12
rhprecg left
12
amyotrophic lateral
8
lateral sclerosis
8
automated mri
8
mri structural
8
degeneration multiple
8
multiple white
8

Similar Publications

A new vision of the role of the cerebellum in pain processing.

J Neural Transm (Vienna)

January 2025

Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.

The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.

View Article and Find Full Text PDF

Debus-Radziszewski Reaction Inspired In Situ "One-Pot" Approach to Construct Luminescent Zirconium-Organic Frameworks.

Inorg Chem

January 2025

Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.

Metal-organic frameworks have received extensive development in the past three decades, which are generally constructed via the reaction between inorganic building units and commercially available or presynthesized organic linkers. However, the presynthesis of organic linkers is usually time-consuming and unsustainable due to multiple-step separation and purification. Therefore, methodology development of a new strategy is fundamentally important for the construction and further exploration of the applications of MOFs.

View Article and Find Full Text PDF

We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization.

View Article and Find Full Text PDF

This review article highlights the importance of novel charge transfer (CT) sensing approach for the detection of ions which are crucial from environmental and biological point of view. The importance, principles of charge transfer, ion sensing, its different types, and its basic process will all be covered here. The strategy has been reported with enormous sensitivity and fast signaling response owing to the fact that strong electronic connection communication exists between donor (D) and acceptor (A) part.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.

Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!