Adverse effects of serotonin depletion in developing zebrafish.

Neurotoxicol Teratol

Department of Anatomy and Cell Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA.

Published: October 2012

In this study, p-chlorophenylalanine (pCPA), an inhibitor of tryptophan hydroxylase (the rate limiting enzyme of serotonin synthesis), was used to reduce serotonin (5HT) levels during early development in zebrafish embryos. One day old dechorionated embryos were treated with 25 μM pCPA for 24h and subsequently rescued. Immunohistological studies using a 5HT antibody confirmed that 5HT neurons in the brain and spinal cord were depleted of transmitter by 2 days post fertilization (dpf). Twenty four hours after pCPA exposure embryos were unable to burst swim and were nearly paralyzed. Movement began to improve at 4 dpf, and by 7 dpf, larvae exhibited swimming activity. Rescued larvae continued to grow in rostrocaudal length over 5 days post-rescue, but their length was always 16-21% below controls. Surprisingly, both groups displayed the same number of myotomes. To examine whether hypertonicity of myotomes in treated embryos played a role in their shorter rostrocaudal lengths, 1 dpf embryos were exposed to a combination of 25 μM pCPA and 0.6 mM of the sodium channel blocker ethyl 3-aminobenzoate methanesulfonate (MS-222). After a 24 hour exposure, the embryos exhibited the same rostrocaudal length as control embryos suggesting that myotome hypertonicity plays a major role in the decreased axial length of the treated larvae. In addition, pCPA treated 2 dpf embryos exhibited abnormal notochordal morphology that persisted throughout recovery. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to determine the relative levels of the serotonin 1A receptor (5HT(1A)) transcript and the serotonin transporter (SERT) transcript in the brain and spinal cord of control and treated embryos. Transcripts were present in both brain and spinal cord as early as 1 dpf and reached maximal concentrations by 3 dpf. Embryos treated with pCPA demonstrated a decrease in the concentration of 5HT(1A) transcript in both brain and spinal cord. While SERT transcript levels remained unaffected in brain, they were decreased in spinal cord. Five days subsequent to pCPA rescue, 5HT(1A) transcript concentrations remained decreased in brain while SERT transcript levels were elevated in both regions. These findings suggest that reduction of 5HT during early zebrafish development may have an adverse effect on body length, notochordal morphology, locomotor behavior, and serotonin message-related expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ntt.2011.08.008DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
brain spinal
16
dpf embryos
12
5ht1a transcript
12
sert transcript
12
embryos
10
embryos treated
8
μm pcpa
8
exposure embryos
8
rostrocaudal length
8

Similar Publications

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.

Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).

View Article and Find Full Text PDF

The Sir Ludwig Guttmann lecture 2023: psychosocial factors and adjustment dynamics after spinal cord injury.

Spinal Cord

January 2025

Rehabilitation Studies, Faculty of Medicine and Health, The University of Sydney, The Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.

Study Design: Narrative review OBJECTIVES: Sir Ludwig Guttmann realised spinal cord injury (SCI) rehabilitation should incorporate more than a biomedical approach if SCI patients were to adjust to their injury and achieve productive social re-integration. He introduced components into rehabilitation he believed would assist his patients build physical strength as well as psychological resilience that would help them re-engage with their communities. We pay tribute to Sir Ludwig by presenting research that has focussed on psychosocial factors that contribute to adjustment dynamics after SCI.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!