A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of proximal methionine residues in Leishmania major peroxidase. | LitMetric

Role of proximal methionine residues in Leishmania major peroxidase.

Arch Biochem Biophys

Division of Structural Biology and Bio-informatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, India.

Published: November 2011

The active site architecture of Leishmania major peroxidase (LmP) is very similar with both cytochrome c peroxidase and ascorbate peroxidase. We utilized point mutagenesis to investigate if the conserved proximal methionine residues (Met248 and Met249) in LmP help in controlling catalysis. Steady-state kinetics of methionine mutants shows that ferrocytochrome c oxidation is <2% of wild type levels without affecting the second order rate constant of first phase of Compound I formation, while the activity toward a small molecule substrate, guaiacol or iodide, increases. Our diode array stopped-flow spectral studies show that the porphyrin π-cation radical of Compound I in mutant LmP is more stable than wild type enzyme. These results suggest that the electronegative sulfur atoms of the proximal pocket are critical factors for controlling the location of a stable Compound I radical in heme peroxidases and are important in the oxidation of ferrocytochrome c.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2011.08.007DOI Listing

Publication Analysis

Top Keywords

proximal methionine
8
methionine residues
8
leishmania major
8
major peroxidase
8
role proximal
4
residues leishmania
4
peroxidase
4
peroxidase active
4
active site
4
site architecture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!