We previously identified Asp(340) in transmembrane segment 7 (TM7) as a key determinant of substrate affinity in Hxt7, a high-affinity facilitative glucose transporter of Saccharomyces cerevisiae. To gain further insight into the structural basis of substrate recognition by Hxt7, we performed cysteine-scanning mutagenesis of 21 residues in TM5 of a Cys-less form of Hxt7. Four residues were sensitive to Cys replacement, among which Gln(209) was found to be essential for high-affinity glucose transport activity. The 17 remaining sites were examined further for the accessibility of cysteine to the hydrophilic sulfhydryl reagent p-chloromercuribenzenesulfonate (pCMBS). Among the Cys mutants, T213C was the only one whose transport activity was completely inhibited by 0.5 mM pCMBS. Moreover, this mutant was protected from pCMBS inhibition by the substrate d-glucose and by 2-deoxy-D-glucose but not by L-glucose, indicating that Thr(213) is situated at or close to a substrate recognition site. The functional role of Thr(213) was further examined with its replacement with each of the other 19 amino acids in wild-type Hxt7. Such replacement generated seven functional transporters with various affinities for glucose. Only three mutants, those with Val, Cys, and Ser at position 213, exhibited high-affinity glucose transport activity. All of these residues possess a side chain length similar to that of Thr, indicating that side chain length at this position is a key determinant of substrate affinity. A working homology model of Hxt7 indicated that Gln(209) and Thr(213) face the central cavity and that Thr(213) is located within van der Waals distance of Asp(340) (TM7).

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi200958sDOI Listing

Publication Analysis

Top Keywords

side chain
12
chain length
12
substrate affinity
12
transport activity
12
transmembrane segment
8
glucose transporter
8
key determinant
8
determinant substrate
8
substrate recognition
8
high-affinity glucose
8

Similar Publications

O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z () and E ().

View Article and Find Full Text PDF

Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.

Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.

View Article and Find Full Text PDF

Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately.

View Article and Find Full Text PDF

In this work, a series of boronated amidines based on the -dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [BHNHC(NH(CH)CH(NH)COOH)CH], where n = 2, 3, 4, were synthesized. These derivatives contain conserved α-amino and α-carboxyl groups recognized by the binding centers of the large neutral amino acid transporter (LAT) system, which serves as a target for the clinically applied BNCT agent para-boronophenylalanine (BPA). The paper describes several approaches to synthesizing the target compounds, their acute toxicity studies, and tumor uptake studies in vivo in two tumor models.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (Φ) and large luminescence dissymmetry factors (g). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!