On the design of composite protein-quantum dot biomaterials via self-assembly.

Biomacromolecules

Material Science and Engineering Interdisciplinary Program, Texas A&M University, College Station, Texas 77843, United States.

Published: October 2011

Incorporation of nanoparticles during the hierarchical self-assembly of protein-based materials can impart function to the resulting composite materials. Herein we demonstrate that the structure and nanoparticle distribution of composite fibers are sensitive to the method of nanoparticle addition and the physicochemical properties of both the nanoparticle and the protein. Our model system consists of a recombinant enhanced green fluorescent protein-Ultrabithorax (EGFP-Ubx) fusion protein and luminescent CdSe-ZnS core-shell quantum dots (QDs), allowing us to optically assess the distribution of both the protein and nanoparticle components within the composite material. Although QDs favorably interact with EGFP-Ubx monomers, the relatively rough surface morphology of composite fibers suggests EGFP-Ubx-QD conjugates impact self-assembly. Indeed, QDs templated onto EGFP-Ubx film post-self-assembly can be subsequently drawn into smooth composite fibers. Additionally, the QD surface charge impacts QD distribution within the composite material, indicating that surface charge plays an important role in self-assembly. QDs with either positively or negatively charged coatings significantly enhance fiber extensibility. Conversely, QDs coated with hydrophobic moieties and suspended in toluene produce composite fibers with a heterogeneous distribution of QDs and severely altered fiber morphology, indicating that toluene severely disrupts Ubx self-assembly. Understanding factors that impact the protein-nanoparticle interaction enables manipulation of the structure and mechanical properties of composite materials. Since proteins interact with nanoparticle surface coatings, these results should be applicable to other types of nanoparticles with similar chemical groups on the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm200889kDOI Listing

Publication Analysis

Top Keywords

composite fibers
16
composite
8
composite materials
8
distribution composite
8
composite material
8
self-assembly qds
8
surface charge
8
qds
6
self-assembly
5
nanoparticle
5

Similar Publications

Edible Berries-An Update on Nutritional Composition and Health Benefits-Part II.

Curr Nutr Rep

January 2025

Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.

Purpose Of Review: Berries are a great source of fiber, polyunsaturated fatty acids, and beneficial secondary metabolites (polyphenols). Various phytochemicals present in berries (glycosidic-linked flavonoids, anthocyanins, etc.) provide potential health benefits to consumers.

View Article and Find Full Text PDF

Experimental investigation and finite element analysis on the durability of root-filled teeth treated with multisonic irrigation.

Dent Mater

January 2025

Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA. Electronic address:

Objective: This study compared the fracture load, stress distribution, and survival probability under cyclic loading of extensively restored teeth treated with multisonic irrigation with those treated with conventional instrumentation, with or without a post.

Methods: Mesial-occlusal-distal cavities were prepared in 30 human mandibular premolars. The teeth were randomly divided into 3 groups of 10 based on the endodontic and restorative procedures: (1) Root canal treatment (RCT) followed by resin composite restoration (control group), (2) RCT followed by a glass fiber post restoration (conventional group), and (3) minimal instrumentation plus multisonic irrigation followed by resin composite restoration (GW group).

View Article and Find Full Text PDF

Edible Mushrooms: a Nutrient-Rich Ingredient for Healthier Food Products - A Review.

Curr Nutr Rep

January 2025

Department of Food Research, Faculty of Chemical Sciences, Universidad Autónoma de Coahuila, Blvd. V. Carranza e Ing. José Cárdenas s/n Col. República C.P., Saltillo, Coahuila, 25280, Mexico.

Objective Of The Review: Edible mushrooms are found to be foods with high nutritional content, which have been shown to be more widely used ingredients in cooking in traditional dishes. This article explores the rising trend in the use of edible mushrooms in new formulations of functional foods, taking advantage of their properties and benefits in human health.

Recent Findings: The use of mushrooms as an ingredient in new or modified food formulations is driven by solid evidence of their nutritional content and bioactivity.

View Article and Find Full Text PDF

Management of wind-turbine blade waste as high-content concrete addition: Mechanical performance evaluation and life cycle assessment.

J Environ Manage

January 2025

Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, c/ Villadiego s/n, 09001, Burgos, Spain. Electronic address:

The management of end-of-life wind-turbine blades in the coming years will be necessary, as a clear solution for their recycling is yet to be found due to their complex composition. The suitability of their mechanical recycling is therefore evaluated in this paper, obtaining Raw-Crushed Wind-Turbine Blade (RCWTB) for subsequent incorporation in high amounts of up to 10% vol. in concrete, replacing the aggregates to achieve Fiber-Reinforced Concrete (FRC).

View Article and Find Full Text PDF

The current study was designed to evaluate the effect of particle size (PS) and inclusion level of wheat straw (WS) obtained from genetically improved wheat on the performance and feeding behavior of Sahiwal cows. Twelve multiparous, mid-lactating Sahiwal cows (DIM 135 ± 25, mean ± SD; 12.8 ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!