TRPV1 is a Ca(2+) permeable cation channel gated by multiple stimuli including noxious heat, capsaicin, protons, and extracellular cations. In this paper, we show that Ca(2+) causes a concentration and voltage-dependent decrease in the capsaicin-gated TRPV1 single-channel conductance. This Ca(2+)-dependent effect on conductance was strongest at membrane potentials between -60 and +20 mV, but was diminished at more hyperpolarised potentials. Using simultaneous recordings of membrane current and fura-2 fluorescence to measure the fractional Ca(2+) current of whole-cell currents evoked through wild-type and mutant TRPV1, we investigated a possible link between the mechanisms underlying Ca(2+) permeation and the Ca(2+)-dependent effect on conductance. Surprisingly, we found no evidence of a structural correlation, and observed that the substitution of amino acids known to regulate Ca(2+) permeability had little effect on the ability for Ca(2+) to decrease TRPV1 conductance. However, we did observe that the Ca(2+)-dependent effect on conductance was not diminished by negative hyperpolarisation for a mutant receptor with severely impaired Ca(2+) permeability, TRPV1-D646N/E648Q/E651Q. This would be consistent with the idea that Ca(2+) reduces conductance by interacting with an intra-pore binding site, and that negative hyperpolarization reduces occupancy of this site by speeding the exit of Ca(2+) into the cell. Taken together, our data show that in addition to directly and indirectly regulating channel gating, Ca(2+) also directly reduces the conductance of TRPV1. Surprisingly, the mechanism underlying this Ca(2+)-dependent effect on conductance is largely independent of mechanisms governing Ca(2+) permeability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339194 | PMC |
http://dx.doi.org/10.1007/s00424-011-1013-7 | DOI Listing |
Langmuir
January 2025
R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan.
The adsorption behavior of an anionic surfactant, hydroxy alkane sulfonate with an alkyl chain length of 18 (C18HAS), from its hard water solution onto a mica surface and resulting lubrication properties were investigated. Because of the double chain-like chemical structure and aggregation behavior, C18HAS formed vesicles in hard water, which adsorbed onto a negatively charged mica surface via cation (Ca) bridging and then transformed into a bilayer film. The number of bilayers formed on the surface was evaluated by force curve measurements using an atomic force microscope (AFM), and the results showed a time-dependent increase of the number of adsorbed bilayers.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Bikai Union Laboratory, Shenyang Pharmaceutical University, Shenyang 110016, China; Hainan Bikai Pharmaceutical Co., LTD, Hainan 570216, China. Electronic address:
The NMDA receptor has long attracted researchers' attention due to its potential as a drug target and its central role in the central nervous system. The NMDA receptor is a ligand-gated and voltage-dependent ion channel widely distributed in the central nervous system. In this study, we employed a drug design strategy combining "molecular assembly" and "combinatorial chemistry.
View Article and Find Full Text PDFPflugers Arch
January 2025
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
FAT atypical cadherin 1 (), which encodes an atypical cadherin-coding protein, has a high mutation rate and is commonly regarded as a tumor suppressor gene in head and neck squamous cell carcinoma (HNSCC). Nonetheless, the potential regulatory mechanisms by which FAT1 influences the progression of HNSCC remain unresolved. In this context, we reported that FAT1 was downregulated in tumor tissues/cells compared with normal tissues/cells and that it was correlated with the clinicopathological features and prognosis of HNSCC.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.
Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!