A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How well do selection tools predict performance later in a medical programme? | LitMetric

How well do selection tools predict performance later in a medical programme?

Adv Health Sci Educ Theory Pract

Centre for Medical and Health Sciences Education, Faculty of Medical and Health Sciences, The University of Auckland, Auckland Mail Centre, New Zealand.

Published: December 2012

The choice of tools with which to select medical students is complex and controversial. This study aimed to identify the extent to which scores on each of three admission tools (Admission GPA, UMAT and structured interview) predicted the outcomes of the first major clinical year (Y4) of a 6 year medical programme. Data from three student cohorts (n = 324) were analysed using regression analyses. The Admission GPA was the best predictor of academic achievement in years 2 and 3 with regression coefficients (B) of 1.31 and 0.9 respectively (each P < 0.001). Furthermore, Admission GPA predicted whether or not a student was likely to earn 'Distinction' rather than 'Pass' in year 4. In comparison, UMAT and interview showed low predictive ability for any outcomes. Interview scores correlated negatively with those on the other tools. None of the tools predicted failure to complete year 4 on time, but only 3% of students fell into this category. Prior academic achievement remains the best measure of subsequent student achievement within a medical programme. Interview scores have little predictive value. Future directions include longer term studies of what UMAT predicts, and of novel ways to combine selection tools to achieve the optimum student cohort.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10459-011-9324-1DOI Listing

Publication Analysis

Top Keywords

admission gpa
12
selection tools
8
medical programme
8
academic achievement
8
interview scores
8
tools
6
well selection
4
tools predict
4
predict performance
4
medical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!