A gyrB-targeted PCR for rapid identification of Salmonella.

Curr Microbiol

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, People's Republic of China.

Published: November 2011

Salmonella causes the majority of infections in humans and homeothermic animals. This article describes a specific polymerase chain reaction (PCR) method developed for a rapid identification of Salmonella. A gyrB-targeted species-specific primer pair, S-P-for (5'-GGT GGT TTC CGT AAA AGT A-3') and S-P-rev (5'-GAA TCG CCT GGT TCT TGC-3'), was successfully designed. PCR with all the Salmonella strains produced a 366- bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 0.01 ng with genomic DNA or 3.2 cells per assay. Good specificity was also demonstrated by fecal samples, from which only the gyrB gene of Salmonella was amplified. Using the culture-PCR method, 27 isolates on Salmonella-Shigella (SS) medium were rapidly identified as Salmonella, which was confirmed by the sequencing of the gyrB gene.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-011-0007-1DOI Listing

Publication Analysis

Top Keywords

rapid identification
8
identification salmonella
8
gyrb gene
8
salmonella
6
gyrb-targeted pcr
4
pcr rapid
4
salmonella salmonella
4
salmonella majority
4
majority infections
4
infections humans
4

Similar Publications

Composition-dependent MRM transitions and structure-indicative elution segments (CMTSES)-based LC-MS strategy for disaccharide profiling and isomer differentiation.

Anal Chim Acta

February 2025

Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China. Electronic address:

Background: Carbohydrates exhibit diverse functions and extensive biological activities and are notable in the field of life sciences. However, their inherent diversity and complexity-steaming from variations in isomeric monomers, glycosidic bonds, configurations, etc.-present considerable challenges in structural analysis.

View Article and Find Full Text PDF

Highly parallel simulation tool for the design of isotachophoresis experiments.

Anal Chim Acta

February 2025

Department of Mechanical Engineering, Stanford University, 488 Escondido Mall, Stanford, CA, 94305, USA. Electronic address:

Background: Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP.

View Article and Find Full Text PDF

Background: The precise identification of pathogens responsible for community-acquired pneumonia (CAP) in children is essential for effective treatment. However, the performance of targeted next-generation sequencing (tNGS) in the detection of pathogens associated with CAP in children remains unclear.

Methods: In this study, 216 children diagnosed with CAP were enrolled, and bronchoalveolar lavage fluid (BALF) samples underwent detection through tNGS, culture, and multiplex quantitative polymerase chain reaction (qPCR).

View Article and Find Full Text PDF

A Chinese isolate of the fungus Penicillium chrysogenum was analyzed using liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry combined with Global Natural Products Social Networking (GNPS) on culture condition leading to the rapid identification of 20 secondary metabolites. Among them are eight polyketones, two phthalides, six diketopiperazine alkaloids, and others. A meleagrine network was examined and proposed as a promising candidate for new natural products.

View Article and Find Full Text PDF

Early urea-to-creatinine ratio to predict rapid muscle loss in critically ill patients with sepsis: a single-center retrospective observational study.

BMC Anesthesiol

January 2025

Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.

Background: Patients with sepsis in the intensive care unit (ICU) often experience rapid muscle loss. The urea-to-creatinine ratio (UCR) is thought to reflect muscle breakdown (creatinine) and catabolism (urea) and is commonly used to assess nutritional and metabolic status. This study aimed to investigate whether changes in UCR (ΔUCR) can predict the development of rapid muscle loss in patients with sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!