For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2011.142DOI Listing

Publication Analysis

Top Keywords

single-molecule electric
8
electric motor
8
experimental demonstration
4
demonstration single-molecule
4
motor molecules
4
molecules components
4
components molecular
4
molecular machines
4
machines methods
4
methods couple
4

Similar Publications

Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity.

ACS Nano

January 2025

Bragg Centre for Materials Research, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.

The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged.

View Article and Find Full Text PDF

RNA Translocation through Protein Nanopores: Interlude of the Molten RNA Globule.

J Am Chem Soc

January 2025

Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.

Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values.

View Article and Find Full Text PDF

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Large Polarization Change Induced by Spin Crossover-Driven Fe(II) Ion Shuttling within a Tripodal Ligand.

J Am Chem Soc

January 2025

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.

View Article and Find Full Text PDF

Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy.

Nano Lett

January 2025

Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.

Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!