A 49-year-old man with chronic type C hepatitis had agreed to undergo pegylated interferon alpha2b/ribavirin (RBV) combination therapy during 48 weeks, but his hepatitis relapsed. Despite of second line treatment with the same combination, 56 weeks later, his hemoglobin decreased and the dose of RBV was decreased. He was then admitted to our hospital because of increasing anemia and this combination therapy was stopped. The results of blood chemistry and immunological examination revealed he had contracted autoimmune hemolytic anemia (AIHA). In cases of deterioration of anemia during this combination, we must discuss about not only RBV-induced hemolytic anemia but also AIHA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hemolytic anemia
12
second treatment
8
pegylated interferon
8
interferon alpha2b/ribavirin
8
combination therapy
8
anemia combination
8
anemia aiha
8
anemia
5
combination
5
[autoimmune hemolytic
4

Similar Publications

Background: Urine neutrophil gelatinase-associated lipocalin (uNGAL) is a biomarker for the early diagnosis of AKI.

Objectives: To evaluate uNGAL in dogs with non-associative immune mediated hemolytic anemia (IMHA) and to evaluate whether uNGAL correlates with disease severity markers, negative prognostic indicators and outcome.

Animals: Twenty-two dogs with non-associative IMHA and 14 healthy dogs.

View Article and Find Full Text PDF

Despite progress in healthcare services for individuals living with sickle cell disease (SCD) in Africa, substantial gaps remain in advanced treatments for SCD. To help address this burden, Tanzania has established one of the largest single-centre SCD programmes in the world and developed an advanced therapy programme for SCD focused on patient engagement and advocacy, clinical activities involving exchange blood transfusion (ExBT) and haematopoietic stem cell transplant (HSCT), gene therapy (GT) preparedness, and enabling partnerships. This report describes the programme's genesis, structure and progress achieved.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a well-known red blood cell enzymopathy and a cause of intravascular hemolysis. This case report presents a child with underlying G6PD deficiency who experienced an acute episode of extensive intravascular hemolysis induced by a scrub typhus infection. The key takeaway from this report is that scrub typhus infection can trigger extensive hemolysis in patients with even "mild" G6PD deficiency, and normal G6PD levels found during the acute phase of hemolysis do not rule out the possibility of underlying G6PD deficiency.

View Article and Find Full Text PDF

Background: Clinical Hereditary Hemolytic Anemia (HAA) particularly Hereditary Spherocytosis (HS) encompasses diverse genetic disorders causing premature red blood cell destruction and intrinsic RBC defects. There's a pressing need for standardized diagnostic protocols tailored to the Asian population, particularly in Saudi Arabia, underscoring the significance of thorough blood biochemistry analysis.

Materials And Methods: A case-control prospective study was conducted at King Abdulaziz University, samples were obtained from King Fahad, hospital Jeddah, Saudi Arabia, serving a significant population, and blood samples from 27 patients meeting ethical criteria for HHA and HS.

View Article and Find Full Text PDF

Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!