Background: Olfactory ensheathing cells (OEC) are considered to be the most suitable cells for transplantation therapy in the central nervous system (CNS) because of their unique ability to help axonal regrowth and remyelination in the CNS. However, there are conflicting reports about the success rates with OEC.

Aim: This study was undertaken to evaluate the therapeutic effect of OEC in rat models using different cell dosages.

Material And Methods: OECs harvested from the olfactory mucosa of adult white Albino rats were cultured. Spinal cord injury (SCI) was inflicted at the lower thoracic segment in a control and test group of rats. Two weeks later, OECs were delivered in and around the injured spinal cord segment of the test group of the rats. The outcome in terms of locomotor recovery of limb muscles was assessed on a standard rating scale and by recording the motor-evoked potentials from the muscles during transcranial electrical stimulation. Finally, the animals were sacrificed to assess the structural repair by light microscopy.

Statistical Analysis: Wilcoxon signed rank test and Mann-Whitney U-test were used to compare the data in the control and the test group of animals. A P value of <0.05 was considered significant.

Results: The study showed a moderate but significant recovery of the injured rats after OEC transplantation (P=0.005).

Conclusion: Transplantation of OECs along with olfactory nerve fibroblasts improved the motor recovery in rat models with SCI.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0028-3886.84339DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
test group
12
olfactory ensheathing
8
cord injury
8
control test
8
group rats
8
motor recovery
4
recovery olfactory
4
ensheathing cell
4
cell transplantation
4

Similar Publications

In Reply to the Letter to the Editor Regarding "Dorsal Root Entry Zone Lesioning Following Unresponsive Spinal Cord Stimulation for Post-Traumatic Neuropathic Pain".

World Neurosurg

December 2024

Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:

View Article and Find Full Text PDF

Behavioral Outcomes After Inpatient Rehabilitation in Pediatric and Adolescent Trauma Patients.

J Pediatr Surg

December 2024

Children's Hospital New Orleans, Department of Surgery, New Orleans LA 70118, USA; Louisiana State University Health Sciences Center, Department of Surgery, Division of Pediatric Surgery, New Orleans LA 70112, USA. Electronic address:

Introduction: Traumatic injury is the leading cause of pediatric mortality and morbidity in the United States. While behavioral impairments of children after traumatic brain injury (TBI) have been described, outcomes following traumatic spinal cord injury (SCI) and multi-trauma (MT) are less known. We aimed to address the prevalence of behavioral and neuropsychiatric disorders in pediatric and adolescent trauma patients.

View Article and Find Full Text PDF

Evaluation of myelin content in the spinal cord of patients with multiple sclerosis: A positron emission tomography study.

Mult Scler Relat Disord

December 2024

Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina-FMUSP, Universidade de São Paulo, São Paulo 05403-911, SP, Brazil. Electronic address:

Background: Multiple sclerosis (MS) is divided into Relapsing-Remitting (RRMS) and Progressive (PMS) phenotypes, both associated with spinal cord (SC) damage. MS-related disability and SC atrophy are not yet fully understood and can differ across phenotypes. A combined approach using Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) could provide a broader understanding of myelin changes in the cervical SC (CSC) in different MS phenotypes and the associations with disability.

View Article and Find Full Text PDF

Mechanical characteristics of spinal cord tissue by indentation.

J Mech Behav Biomed Mater

December 2024

Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany. Electronic address:

The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading.

View Article and Find Full Text PDF

Sex-specific astrocyte regulation of spinal motor circuits by Nkx6.1.

Cell Rep

December 2024

Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!