The yeast transcriptional activator Gal4 localizes to UAS(GAL) sites even in the absence of galactose but cannot activate transcription due to an association with the Gal80 protein. By 4 min after galactose addition, Gal4-activated gene transcription ensues. It is well established that this rapid induction arises through a galactose-triggered association between the Gal80 and Gal3 proteins that decreases the association of Gal80 and Gal4. How this happens mechanistically remains unclear. Strikingly different hypotheses prevail concerning the possible roles of nucleocytoplasmic distribution and trafficking of Gal3 and Gal80 and where in the cell the initial Gal3-Gal80 association occurs. Here we tested two conflicting hypotheses by evaluating the subcellular distribution and dynamics of Gal3 and Gal80 with reference to induction kinetics. We determined that the rates of nucleocytoplasmic trafficking for both Gal80 and Gal3 are slow relative to the rate of induction. We find that depletion of the nuclear pool of Gal3 slows the induction kinetics. Thus, nuclear Gal3 is critical for rapid induction. Fluorescence-recovery-after-photobleaching experiments provided data suggesting that the Gal80-Gal4 complex exhibits kinetic stability in the absence of galactose. Finally, we detect Gal3 at the UAS(GAL) only if Gal80 is covalently linked to the DNA-binding domain. Taken altogether, these new findings lead us to propose that a transient interaction of Gal3 with Gal4-associated Gal80 could explain the rapid response of this system. This notion could also explain earlier observations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213366 | PMC |
http://dx.doi.org/10.1534/genetics.111.131839 | DOI Listing |
Temperature is an important control factor for biologics biomanufacturing in precision fermentation. Here, we explored a highly responsive low temperature-inducible genetic system (LowTempGAL) in the model yeast Saccharomyces cerevisiae. Two temperature biosensors, a heat-inducible degron and a heat-inducible protein aggregation domain, were used to regulate the GAL activator Gal4p, rendering the leaky LowTempGAL systems.
View Article and Find Full Text PDFFront Mol Biosci
March 2022
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.
GAL network in the yeast is one of the most well-characterized regulatory network. Expression of GAL genes is contingent on exposure to galactose, and an appropriate combination of the alleles of the regulatory genes GAL3, GAL1, GAL80, and GAL4. The presence of multiple regulators in the GAL network makes it unique, as compared to the many sugar utilization networks studied in bacteria.
View Article and Find Full Text PDFPLoS Comput Biol
September 2021
Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America.
Quantitative traits are measurable phenotypes that show continuous variation over a wide phenotypic range. Enormous effort has recently been put into determining the genetic influences on a variety of quantitative traits with mixed success. We identified a quantitative trait in a tractable model system, the GAL pathway in yeast, which controls the uptake and metabolism of the sugar galactose.
View Article and Find Full Text PDFLife Sci Alliance
December 2020
Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
The yeast galactose switch operated by the Gal4p-Gal80p-Gal3p regulatory module is a textbook model of transcription regulation in eukaryotes. The Gal80 protein inhibits Gal4p-mediated transcription activation by binding to the transcription activation domain. In , inhibition is relieved by formation of an alternative Gal80-Gal3 complex.
View Article and Find Full Text PDFNat Commun
August 2019
Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
We lack an understanding of how the full range of genetic variants that occur in individuals can interact. To address this shortcoming, here we combine diverse mutations between genes in a model regulatory network, the galactose (GAL) switch of budding yeast. The effects of thousands of pairs of mutations fall into a limited number of phenotypic classes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!