AI Article Synopsis

  • Recent research identified mutations in isocitrate dehydrogenase 2 (IDH2) among half of the patients with d-2-hydroxyglutaric aciduria (D-2-HGA), specifically mutations at residue Arg(140) (R140) that produce a gain-of-function enzyme converting 2-ketoglutarate into d-2-hydroxyglutarate.
  • A specialized enzyme assay was developed to confirm this gain-of-function and assess potential inhibitors, utilizing advanced techniques like ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for precise measurements.
  • The study found that D-2-HGA type II lymphoblasts exhibited significantly higher enzymatic activity and d-

Article Abstract

The recent discovery of heterozygous isocitrate dehydrogenase 2 (IDH2) mutations of residue Arg(140) to Gln(140) or Gly(140) (IDH2(wt/R140Q), IDH2(wt/R140G)) in d-2-hydroxyglutaric aciduria (D-2-HGA) has defined the primary genetic lesion in 50% of D-2-HGA patients, denoted type II. Overexpression studies with IDH1(R132H) and IDH2(R172K) mutations demonstrated that the enzymes acquired a new function, converting 2-ketoglutarate (2-KG) to d-2-hydroxyglutarate (D-2-HG), in lieu of the normal IDH reaction which reversibly converts isocitrate to 2-KG. To confirm the IDH2(wt/R140Q) gain-of-function in D-2-HGA type II, and to evaluate potential therapeutic strategies, we developed a specific and sensitive IDH2(wt/R140Q) enzyme assay in lymphoblasts. This assay determines gain-of-function activity which converts 2-KG to D-2-HG in homogenates of D-2-HGA type II lymphoblasts, and uses stable-isotope-labeled 2-keto[3,3,4,4-(2)H(4)]glutarate. The specificity and sensitivity of the assay are enhanced with chiral separation and detection of stable-isotope-labeled D-2-HG by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Eleven potential inhibitors of IDH2(wt/R140Q) enzyme activity were evaluated with this procedure. The mean reaction rate in D-2-HGA type II lymphoblasts was 8-fold higher than that of controls and D-2-HGA type I cells (14.4nmolh(-1)mgprotein(-1) vs. 1.9), with a corresponding 140-fold increase in intracellular D-2-HG level. Optimal inhibition of IDH2(wt/R140Q) activity was obtained with oxaloacetate, which competitively inhibited IDH2(wt/R140Q) activity. Lymphoblast IDH2(wt/R140Q) showed long-term cell culture stability without loss of the heterozygous IDH2(wt/R140Q) mutation, underscoring the utility of the lymphoblast model for future biochemical and therapeutic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2011.08.006DOI Listing

Publication Analysis

Top Keywords

d-2-hga type
16
lymphoblast model
8
gain-of-function activity
8
d-2-hydroxyglutaric aciduria
8
biochemical therapeutic
8
therapeutic studies
8
idh2wt/r140q
8
idh2wt/r140q enzyme
8
type lymphoblasts
8
idh2wt/r140q activity
8

Similar Publications

Purpose: Several underlying conditions of moyamoya syndrome (MMS) are well established, but so far, D-2-hydroxyglutaric aciduria (D-2-HGA) has not been mentioned. We are the first to describe a case of a patient suffering from D-2-HGA developing MMS.

Methods: The co-occurrence of D-2-HGA and MMS in a patient is reported.

View Article and Find Full Text PDF

D-2-hydroxyglutaric aciduria type II (D2HGA2) is a severe inborn disorder of metabolism caused by heterozygous R140 mutations in the IDH2 (isocitrate dehydrogenase 2) gene. Here we report the results of treatment of two children with D2HGA2, one of whom exhibited severe dilated cardiomyopathy, with the selective mutant IDH2 enzyme inhibitor enasidenib. In both children, enasidenib treatment led to normalization of D-2-hydroxyglutarate (D-2-HG) concentrations in body fluids.

View Article and Find Full Text PDF

Disruption of mitochondrial bioenergetics, calcium retention capacity and cell viability caused by D-2-hydroxyglutaric acid in the heart.

Biochimie

April 2023

Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Electronic address:

Accumulation of D-2-hydroxyglutaric acid (D-2-HG) is the biochemical hallmark of D-2-hydroxyglutaric aciduria type I and, particularly, of D-2-hydroxyglutaric aciduria type II (D2HGA2). D2HGA2 is a metabolic inherited disease caused by gain-of-function mutations in the gene isocitrate dehydrogenase 2. It is clinically characterized by neurological abnormalities and a severe cardiomyopathy whose pathogenesis is still poorly established.

View Article and Find Full Text PDF

D-2-hydroxyglutaric aciduria (D-2-HGA) is a rare neurometabolic disease with two main subtypes, caused by either inactivating variants in D2HGDH (type I) or germline gain of function variants in IDH2 (type II), that result in accumulation of the same toxic metabolite, D-2-hydroxyglutarate. The main clinical features of both are neurologic, including developmental delay, hypotonia, and seizures. Dilated cardiomyopathy is a unique feature thus far only reported in type II.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!