Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chronic single-unit recording in subcortical brain regions is increasingly important in neurophysiological studies. However, methods for long-term, stable recording of multiple single-units in deep brain regions and in dura-surrounded ganglion have not yet been established. In the present study, we propose a bundled microwire array design which is capable of long-term recording of the trigeminal ganglion and deep-brain units. This electrode set is easy to construct from common materials and tools found in an electrophysiological laboratory. The salient features of our design include: (1) short and separated tungsten microwires for stable chronic recording; (2) the use of a 30-guage stainless steel guide tube for facilitating penetration and aiming for deep targets as well as electrical grounding; (3) the inclusion of a reference of the same microwire material inside the bundle to enhance common mode rejection of far field noises; and (4) an adjustable connector. In our case, we used a 90° backward bending connector so that implanted rats could perform the same hole-seeking behavior and their faces and the whiskers could be stimulated in the behaving state. It was demonstrated that this multi-channel electrode caused minimal tissue damage at the recording site and we were able to obtain good, stable single-unit recordings from the trigeminal ganglion and ventroposterior medial thalamus areas of freely moving rats for up to 80 days. This methodology is useful for the studies that require long term and high quality unit recording in the deep brain or in the trigeminal system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2011.08.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!