A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. | LitMetric

Object: The authors investigated the feasibility of using injectable hydrogels, based on poly(N-isopropylacrylamide) (PNIPAAm), lightly cross-linked with polyethylene glycol (PEG) or methylcellulose (MC), to serve as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. The primary aims of this work were to assess the biocompatibility of the scaffolds by evaluating graft cell survival and the host tissue immune response. The scaffolds were also evaluated for their ability to promote axonal growth through the action of released brain-derived neurotrophic factor (BDNF).

Methods: The in vivo performance of PNIPAAm-g-PEG and PNIPAAm-g-MC was evaluated using a rodent model of spinal cord injury (SCI). The hydrogels were injected as viscous liquids into the injury site and formed space-filling hydrogels. The host immune response and biocompatibility of the scaffolds were evaluated at 2 weeks by histological and fluorescent immunohistochemical analysis. Commercially available matrices were used as a control and examined for comparison.

Results: Experiments showed that the scaffolds did not contribute to an injury-related inflammatory response. PNIPAAm-g-PEG was also shown to be an effective vehicle for delivery of cellular transplants and supported graft survival. Additionally, PNIPAAm-g-PEG and PNIPAAm-g-MC are permissive to axonal growth and can serve as injectable scaffolds for local delivery of BDNF.

Conclusions: Based on the results, the authors suggest that these copolymers are feasible injectable scaffolds for cell grafting into the injured spinal cord and for delivery of therapeutic factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025870PMC
http://dx.doi.org/10.3171/2011.7.SPINE11194DOI Listing

Publication Analysis

Top Keywords

injectable scaffolds
16
spinal cord
16
scaffolds local
12
local delivery
12
cellular transplants
12
injured spinal
12
scaffolds
8
delivery neurotrophins
8
neurotrophins cellular
8
transplants injured
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!