The N-terminal domain of the Escherichia coli PriA helicase contains both the DNA- and nucleotide-binding sites. Energetics of domain--DNA interactions and allosteric effect of the nucleotide cofactors.

Biochemistry

Department of Biochemistry and Molecular Biology, Department of Obstetrics and Gynecology, The Sealy Center for Structural Biology, and The Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1053, United States.

Published: November 2011

Functional interactions of the Escherichia coli PriA helicase 181N-terminal domain with the DNA and nucleotide cofactors have been quantitatively examined. The isolated 181N-terminal domain forms a stable dimer in solution, most probably reflecting the involvement of the domain in specific cooperative interactions of the intact PriA protein--double-stranded DNA (dsDNA) complex. Only one monomer of the domain dimer binds the DNA; i.e., the dimer has one effective DNA-binding site. Although the total site size of the dimer--single-stranded DNA (ssDNA) complex is ~13 nucleotides, the DNA-binding subsite engages in direct interactions with approximately five nucleotides. A small number of interacting nucleotides indicates that the DNA-binding subsites of the PriA helicase, i.e., the strong subsite on the helicase domain and the weak subsite on the N-terminal domain, are spatially separated in the intact enzyme. Contrary to current views, the subsite has an only slight preference for the 3'-end OH group of the ssDNA and lacks any significant base specificity, although it has a significant dsDNA affinity. Unlike the intact helicase, the DNA-binding subsite of the isolated domain is in an open conformation, indicating the presence of the direct helicase domain--N-terminal domain interactions. The discovery that the 181N-terminal domain possesses a nucleotide-binding site places the allosteric, weak nucleotide-binding site of the intact PriA on the N-terminal domain. The specific effect of ADP on the domain DNA-binding subsite indicates that in the intact helicase, the bound ADP not only opens the DNA-binding subsite but also increases its intrinsic DNA affinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205976PMC
http://dx.doi.org/10.1021/bi201100kDOI Listing

Publication Analysis

Top Keywords

dna-binding subsite
16
n-terminal domain
12
pria helicase
12
181n-terminal domain
12
domain
11
escherichia coli
8
coli pria
8
nucleotide cofactors
8
domain specific
8
intact pria
8

Similar Publications

The p53 protein, known as the 'guardian of the genome', plays an important role in cancer prevention. Unfortunately, p53 mutations result in compromised activity with over 50% of cancers resulting from point mutations to p53. There is considerable interest in mutant p53 reactivation, with the development of small-molecule reactivators showing promise.

View Article and Find Full Text PDF

Zinc Fingers 10 and 11 of Miz-1 undergo conformational exchange to achieve specific DNA binding.

Structure

April 2022

Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada. Electronic address:

Miz-1 (ZBTB17) is a poly-zinc finger BTB/POZ transcription factor with 12 consecutive C2H2 zinc fingers (ZFs) that binds transcriptional start sites (TSSs) to regulate the expression of genes involved in cell development and proliferation. As of now, it is not known which of the 12 consecutive ZFs are responsible for the recognition of the 24 base pair consensus sequence found at these TSSs. Evidence suggests ZFs 7-12 plays this role.

View Article and Find Full Text PDF

The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis. The operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for transcription.

View Article and Find Full Text PDF

Objectives: Nucleotide excision repair protein expression has been claimed to be responsible for platinum-based chemotherapy resistance. ERCC1, XPF and XPA, core proteins in DNA repair, were evaluated regarding their prognostic value in patients with head and neck squamous cell carcinoma by looking at overall survival and time to recurrence.

Materials And Methods: Tissue microarrays were constructed from 453 cases of HNSCC, including 222 oral (49%), 126 oropharyngeal (27.

View Article and Find Full Text PDF

ArgP is a LysR-type transcriptional regulator (LTTR) that operates with two effector molecules, lysine and arginine, to differentially regulate gene expression. Effector-free ArgP stimulates transcription of all investigated regulon members, except argO, whereas lysine abolishes this effect. Activation of argO, encoding an exporter for arginine and canavanine, is strictly dependent on arginine-bound ArgP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!