The elevated serum S100A8/A9 during acute myocardial infarction is not of cardiac myocyte origin.

Inflammation

Institute of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang 310003, People's Republic of China.

Published: June 2012

Overproduction of circulating S100A8/A9 occurs in patients following acute myocardial infarction (AMI). It remains unclear whether ischemia insult per se induces S100A8 and S100A9 expression in cardiac myocytes or even whether the cardiac myocytes participate as a source of these proteins. In this study, western blot analysis and quantitative real-time reverse transcription polymerase chain reaction were used to test samples obtained from isolated spontaneously hypertensive rat hearts and Wistar-Kyoto rat hearts subjected to global normothermic ischemia and from neonatal Wistar rat cardiac myocytes undergoing hypoxia. Ischemia did not increase the expression of S100A8 and S100A9 proteins and mRNA in the myocardium either from the spontaneously hypertensive rat hearts or the Wistar-Kyoto rat hearts. In addition, the levels of S100A8 and S100A9 proteins were unchanged in the neonatal rat cardiac myocytes undergoing hypoxia. However, both ischemia and hypoxia activated NF-kappaB in ischemic myocardium and in hypoxic cardiac cells in a time-dependent manner. The results suggest that the increased serum S100A8/A9 concentrations following AMI were not of cardiac myocyte origin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-011-9375-8DOI Listing

Publication Analysis

Top Keywords

cardiac myocytes
16
rat hearts
16
s100a8 s100a9
12
serum s100a8/a9
8
acute myocardial
8
myocardial infarction
8
cardiac myocyte
8
myocyte origin
8
spontaneously hypertensive
8
hypertensive rat
8

Similar Publications

Sonogenetics is a novel antiarrhythmic mechanism.

Chaos

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.

Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.

View Article and Find Full Text PDF

Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination.

Curr Cardiol Rep

January 2025

Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.

Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.

Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.

View Article and Find Full Text PDF

Small mammals have a higher heart rate and, relative to body mass (Mb), a higher metabolic rate than large mammals. In contrast, heart weight and stroke volume scale linearly with Mb. With mitochondria filling approximately 50% of a shrew cardiomyocyte - space unavailable for myofibrils - it is unclear how small mammals generate enough contractile force to pump blood into circulation.

View Article and Find Full Text PDF

Arterial NALCN Knock-Down Ameliorates Mineralocorticoid-Induced Hypertension and Arterial Over-Contractility.

Circ Res

January 2025

Department of Physiology, Institute of Functional Genomics and Research Institute of Medical Science, Konkuk University School of Medicine, Chungju, Republic of Korea (H.L., S.P., J.R.A., M.S.S., H.J.N., B.K., Y.M.B.).

View Article and Find Full Text PDF

Background: Transient receptor potential cation channel subfamily V member 2 (TRPV2) functions as a stretch-sensitive calcium channel, with overexpression in the sarcolemma of skeletal and cardiac myocytes leading to detrimental calcium influx and triggering muscle degeneration. In our previous pilot study, we showed that tranilast, a TRPV2 inhibitor, reduced brain natriuretic peptide levels in two patients with muscular dystrophy and advanced heart failure. Building on this, we performed a single-arm, open-label, multicenter study herein to evaluate the safety and efficacy of tranilast in the treatment of advanced heart failure in patients with muscular dystrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!