Triazole-modified deoxycytidines have been prepared for incorporation into single-stranded deoxyribonucleic acid (ssDNA). Electrochemical responses and electrogenerated chemiluminescence (ECL) of these deoxycytidine (dC) analogues, 1-4, were investigated as the monomers. Cyclic voltammetry and differential pulse voltammetry techniques were used to determine the oxidation and reduction potentials of 1-4, along with the reversibility of their electrochemical reactions. The dC analogues, in N,N-dimethylformamide containing 0.1 M tetra-n-butylammonium perchlorate as electrolyte, exhibited weak relative ECL efficiencies following the annihilation mechanism, while these efficiencies were enhanced with the use of benzoyl peroxide following the coreactant mechanism. It was shown that these nucleosides could generate excited monomers, and excimers as seen by the red-shifted ECL maxima relative to their corresponding photoluminescence peak wavelengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1cp22116g | DOI Listing |
Nano Lett
January 2025
Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.
Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
Understanding the stability of single nanoparticles is crucial for optimizing their performance in various applications, including catalysis. In this study, we employed electrochemiluminescence (ECL) imaging to investigate the temporal stability of individual Au and Pt nanoparticles within precisely engineered arrays. Our results reveal significant differences in the stability of Au and Pt NPs.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
Matrix metalloproteinase 2 (MMP-2) is an important biomarker for some diseases. Herein, one first-case coordination-based site-specific labeling strategy is proposed for electrogenerated chemiluminescence (ECL) biosensing of MMP-2 by employing an iridium(III) solvent complex as a signal reagent and a histidine (His)-containing peptide as a molecular recognition substrate. One ECL probe was prepared via coordination labeling of the His-containing peptide with one iridium(III) solvent complex ([(3-(2-pyridyl)benzoic acid)Ir(DMSO)Cl], Ir1-DMSO).
View Article and Find Full Text PDFBioelectrochemistry
February 2025
Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China. Electronic address:
This study developed a dual-mode "on-off-on" sensor based on a bipyridine ruthenium metal-organic framework (Ru-MOF) and dual enzyme cleavage technology for the sensitive detection of the K-ras gene. The sensor combines electrogenerated chemiluminescence (ECL) and fluorescence (FL) detection modes, achieving high sensitivity and specificity in detecting the K-ras gene through catalytic hairpin assembly (CHA) and dual enzyme cleavage reactions. Experimental results showed that the detection limits for the K-ras gene were 0.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Microbubbles, inside-out microdroplets, act as extraordinary microreactors to facilitate thermodynamically unfavorable reactions in bulk solutions of water. We explored the formation of hydrogen peroxide (HO) and its sustained regeneration at the interface of water-gas microbubbles. For this purpose, the chemiluminescence of luminol was recorded by a digital camera to map the intensity of blue light emission over the time of about 20 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!