Background: Rapid and early dengue diagnosis is essential for patient management and early disease intervention. MP Diagnostics ASSURE(®) Dengue IgA Rapid Test (Dengue IgA RT) was developed for the rapid detection of anti-dengue IgA in patients' biological samples. The performance of Dengue IgA RT was examined using multiple categories of well-characterized samples.
Materials And Methods: Dengue IgA RT was designed and developed. Following characterization of samples by reference ELISAs, the performance of the kit was evaluated.
Results: The overall sensitivity and specificity of Dengue IgA RT were 86.70% (n=233) and 86.05% (n=681) respectively; in which Dengue IgA RT detected 77.42% primary and 92.86% secondary cases; compared to 70.97% and 72.14% by IgM-Cap ELISA and 89.25% and 20% by Non-Structural Protein 1 (NS1) Ag ELISA respectively. Using 125 paired samples, Dengue IgA RT showed 84.80% sensitivity at acute phase and 99.20% sensitivity at convalescent phase; with 92% specificity at both phases. Dengue IgA RT also demonstrated a consistent performance (sensitivity: 85.53%, specificity: 80%) with 76 whole blood samples. In detecting all four serotypes of DENV (n=162), the performance of Dengue IgA RT was comparable with in-house IgM-Cap ELISA. Kinetics of anti-dengue IgA production was elucidated with 42.86% detection level as early as one-two days after fever onset, which increased to 83.33% between five and seven days after fever onset.
Conclusion: Dengue IgA RT demonstrated a good performance and is applicable as one of the dengue early diagnostic tools at all levels of health care system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162809 | PMC |
http://dx.doi.org/10.4103/0974-777X.83528 | DOI Listing |
Antiviral Res
January 2025
Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA. Electronic address:
Dengue virus (DENV) is a rapidly expanding infectious disease threat that causes an estimated 100 million symptomatic infections every year. A barrier to preventing DENV infections with traditional vaccines or prophylactic monoclonal antibody (mAb) therapies is the phenomenon of Antibody-Dependent Enhancement (ADE), wherein sub-neutralizing levels of DENV-specific IgG antibodies can enhance infection and pathogenesis rather than providing protection from disease. Fortunately, IgG is not the only antibody isotype capable of binding and neutralizing DENV, as DENV-specific IgA1 isotype mAbs can bind and neutralize DENV while without exhibiting any ADE activity.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, USA.
Lancet Microbe
December 2024
Massachusetts General Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Electronic address:
Background: There is a shortage of rapid, accurate, and low-cost assays for diagnosing enteric fever. The dual-path platform for typhoid (DPPT) assay had high accuracy in retrospective studies with banked plasma samples. We aimed to evaluate the diagnostic accuracy of the DPPT assay in a prospective study using fingerstick capillary blood.
View Article and Find Full Text PDFJ Infect Dis
November 2024
Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA.
Background: Dengue virus (DENV) nonstructural protein 1 (NS1) has multiple functions within infected cells, on the cell surface, and in secreted form, and is highly immunogenic. Immunity from previous DENV infections is known to exert both positive and negative effects on subsequent DENV infections, but the contribution of NS1-specific antibodies to these effects is incompletely understood.
Methods: We investigated the functions of NS1-specific antibodies and their significance in DENV infection.
PLoS Pathog
October 2023
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America.
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasures that avoid enhancement of infection associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following repeated DENV infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!