Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein-protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes' CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955202 | PMC |
http://dx.doi.org/10.1007/s11693-010-9056-1 | DOI Listing |
Protein Sci
April 2024
CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear.
View Article and Find Full Text PDFNat Commun
October 2023
University of Chinese Academy of Sciences, 100049, Beijing, China.
Bacterial σ factors of the σ-family are widespread in Bacilli and Clostridia and are involved in the heat shock response, iron metabolism, virulence, and carbohydrate sensing. A multiplicity of σ paralogues in some cellulolytic bacteria have been shown to be responsible for the regulation of the cellulosome, a multienzyme complex that mediates efficient cellulose degradation. Here, we report two structures at 3.
View Article and Find Full Text PDFInt J Biol Macromol
January 2023
CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal. Electronic address:
The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2022
Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
Cellulosomes are multi-enzyme complexes produced by specialised micro-organisms. The spatial proximity of synergistically acting enzymes incorporated in these naturally occurring complexes supports the efficient hydrolysis of lignocellulosic biomass. Several functional designer cellulosomes, incorporating naturally non-cellulosomal cellulases, have been constructed and can be used for cellulose saccharification.
View Article and Find Full Text PDFJ Biol Chem
August 2021
Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, Lisboa, Portugal. Electronic address:
The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!