We demonstrate burst-mode operation of a polarization-maintaining Yb-doped fiber amplifier. Groups of pulses with a temporal spacing of 10 ns and 1 kHz overall repetition rate are amplified to an average pulse energy of ∼20 μJ and total burst energy of 0.25 mJ. The pulses are externally compressed to ∼400 fs. The amplifier is synchronously pulsed-pumped to minimize amplified spontaneous emission between the bursts. We characterize the influence of pump pulse duration, pump-to-signal delay, and signal burst length.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.36.003383 | DOI Listing |
Sci Adv
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China.
Microcavity exciton polaritons (polaritons) as part-light part-matter quasiparticles garner considerable attention for Bose-Einstein condensation at elevated temperatures. Recently, halide perovskites have emerged as promising room-temperature polaritonic platforms because of their large exciton binding energies and superior optical properties. However, currently, inducing room-temperature nonequilibrium polariton condensation in perovskite microcavities requires optical pulsed excitations with high excitation densities.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.
The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100 MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.
View Article and Find Full Text PDFAs a low-energy method to increase the data rate of optical links in data centers, we propose self-homodyne Nyquist optical time division multiplexing (OTDM). In Nyquist OTDM, spectrally efficient high-baud rate signals can be generated exceeding the limit of electronic signal processing. However, full integration of OTDM systems has not been reported, mainly because of the complicated signal detection scheme, which involves demultiplexing and clock recovery.
View Article and Find Full Text PDFRecent advancements in display technology have led to the development and diversification of complex glass materials. Among them, Corning's Lotus NXT glass offers excellent optical properties, high thermal stability, and dimensional accuracy, which are crucial for display applications. However, these characteristics make it difficult to apply pre-existing machining techniques developed for conventional glass materials directly to NXT glass.
View Article and Find Full Text PDFThe Goos-Hänchen and Imbert-Fedorov shifts are significant wave phenomena, yet the underlying mechanism governing the spatiotemporal vortex pulses reflected and refracted on graphene remains opaque. In this study, we analytically derive the expressions for the centroid shifts of spatiotemporal vortex pulses by applying the Fresnel-Snell formulas to each plane wave in the incident spatiotemporal vortex pulse spectrum. We demonstrate that the longitudinal shifts are correlated with the angular shifts, and thus, both are subject to resonant enhancement in the vicinity of the Brewster angle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!