A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide. | LitMetric

AI Article Synopsis

  • Researchers investigated using Rhizopus oryzae lipase immobilized in a hydroxylpropyl methyl cellulose and polyvinyl alcohol blend to synthesize citronellol esters in supercritical carbon dioxide (Sc-CO2).
  • The optimization of reaction parameters increased the citronellol acetate yield from 11% to 91%, showcasing the efficiency of the immobilized lipase compared to the free form.
  • The method offers advantages like lower biocatalyst loading, reduced reaction temperature and pressure, and successful recycling of the immobilized biocatalyst for multiple reactions.

Article Abstract

In present work, Rhizopus oryzae lipase immobilized on a film prepared using blend of hydroxylpropyl methyl cellulose (HPMC) and polyvinyl alcohol (PVA) was investigated for synthesis of citronellol esters with supercritical carbon dioxide (Sc-CO(2)) as a reaction medium. The transesterification reaction was optimized for various reaction parameters like effect of molar ratio, acyl donor, time, temperature, enzyme concentration, effect of pressure and co-solvent to achieve the maximum yield of desired product. The results obtained signify remarkable increment (about eightfold) in the yield of citronellol acetate (91%) as compared to that of free lipase (11%) in Sc-CO(2). The developed biocatalytic methodology provides a substantial advantage of low biocatalyst loading (1.5%, w/v), lower reaction temperature (45°C) and lower pressure (8 MPa) as compared to previous reports. The immobilization method has significantly enhanced the operational stability of lipase for ester synthesis under Sc-CO(2) conditions. The developed methodology was successfully applied for synthesis of three different industrially important citronellol esters namely citronellol acetate (91%), citronellol butyrate (98%), citronellol laurate (99%) with excellent yields using vinyl esters as acyl donor under Sc-CO(2) conditions. In addition, the immobilized biocatalyst was effectively recycled for three consecutive recycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2011.08.019DOI Listing

Publication Analysis

Top Keywords

rhizopus oryzae
8
oryzae lipase
8
ester synthesis
8
supercritical carbon
8
carbon dioxide
8
citronellol esters
8
acyl donor
8
citronellol acetate
8
acetate 91%
8
sc-co2 conditions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!