The innate immune system detects viruses through molecular sensors that trigger the production of type I interferons (IFN-I) and inflammatory cytokines. As viruses vary tremendously in size, structure, genomic composition, and tissue tropism, multiple sensors are required to detect their presence in various cell types and tissues. In this review, we summarize current knowledge of the diversity, specificity, and signaling pathways downstream of viral sensors and ask whether two distinct sensors that recognize the same viral component are complementary, compensatory, or simply redundant. We also discuss why viral sensors are differentially distributed in distinct cell types and whether a particular cell type dominates the IFN-I response during viral infection. Finally, we review evidence suggesting that inappropriate signaling through viral sensors may induce autoimmunity. The picture emerging from these studies is that disparate viral sensors in different cell types form a dynamic and integrated molecular network that can be exploited for improving vaccination and therapeutic strategies for infectious and autoimmune diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170087 | PMC |
http://dx.doi.org/10.1111/j.1600-065X.2011.01049.x | DOI Listing |
Sensors (Basel)
January 2025
Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.
Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.
View Article and Find Full Text PDFNat Immunol
January 2025
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:
Background: Viral epidemics have long endangered human health and had dramatic impacts on environment and society. The currently known viruses and the rapid emergence of previously unknown viruses lead to an urgent need for effective virus detection strategies. It is important to develop methods that can detect multiple related viruses simultaneously in order to improve detection efficiency and to avoid treatment delays due to misdiagnoses.
View Article and Find Full Text PDFImmune-mediated diseases are common in humans. The immune system is a complex host defense system that evolved to protect us from pathogens, but also plays an important role in homeostatic processes, removing dead or senescent cells, and participating in tumor surveillance. The human immune system has two arms: the older innate immune system, and the newer adaptive immune system.
View Article and Find Full Text PDFAnalyst
January 2025
The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
Developing low-cost self-service portable sensors to detect viruses is an important step in combating the spread of viral outbreaks. Here, we describe the development of an aptamer-free paper-based molecularly imprinted sensor for the instrument-free detection of influenza virus A (H5N1). In this sensor, Whatman paper loaded with FeO nanoparticles (WP@FeO) was prepared as a substrate upon which silicon imprinting occurred in the presence of the template virus H5N1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!