The seeds of Arabidopsis thaliana and many other plants are surrounded by a pectinaceous mucilage that aids in seed hydration and germination. Mucilage is synthesized during seed development within maternally derived seed coat mucilage secretory cells (MSCs), and is released to surround the seed upon imbibition. The FEI1/FEI2 receptor-like kinases and the SOS5 extracellular GPI-anchored protein were shown previously to act on a pathway that regulates the synthesis of cellulose in Arabidopsis roots. Here, we demonstrate that both FEI2 and SOS5 also play a role in the synthesis of seed mucilage. Disruption of FEI2 or SOS5 leads to a reduction in the rays of cellulose observed across the seed mucilage inner layer, which alters the structure of the mucilage in response to hydration. Mutations in CESA5, which disrupts an isoform of cellulose synthase involved in primary cell wall synthesis, result in a similar seed mucilage phenotype. The data indicate that CESA5-derived cellulose plays an important role in the synthesis and structure of seed coat mucilage and that the FEI2/SOS5 pathway plays a role in the regulation of cellulose synthesis in MSCs. Moreover, these results establish a novel structural role for cellulose in anchoring the pectic component of seed coat mucilage to the seed surface.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2011.04760.xDOI Listing

Publication Analysis

Top Keywords

seed coat
16
coat mucilage
16
seed mucilage
12
seed
11
mucilage
10
cellulose
8
cellulose synthesis
8
cellulose synthase
8
structure seed
8
fei2 sos5
8

Similar Publications

The present investigation deals with comparisons drawn among three types of different mustard seed coat colors, namely, Black (), Brown (), and White (), with respect to protein's bio-availability through pepsin digestibility, with and without the involvement of major anti-nutritional factors (glucosinolate type AITC, Allylisothiothiocyanate) and relative food functions. These are validated by means of crude protein determination, precipitated protein isolate preparation for evaluating the fat absorption capacity (FAC), emulsifying activity (EA), emulsion stability (ES), whippability, foam stability (FS), the nitrogen solubility index (NSI), and the protein dispersibility index (PDI). The results indicate that the partial removal of glucosinolates from brown mustard (0.

View Article and Find Full Text PDF

Mucilicious methods: Navigating the tools developed to Arabidopsis Seed Coat Mucilage analysis.

Cell Surf

June 2025

Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile.

During the last decades, Arabidopsis seed mucilage has been extensively studied to gain insight into the metabolism of pectin, hemicellulose and cellulose. This review aims to provide a comprehensive examination of the techniques used to understand the composition and structure of mucilage. Moreover, we present novel findings from mucilage analysis, including the separation of pectic domains within the mucilage, offering a fresh perspective on utilizing traditional techniques to analyze mucilage mutant lines.

View Article and Find Full Text PDF

In Vitro Investigation of the Anti-Hepatocellular Carcinoma Activity of Peptides Derived From Quinoa (Chenopodium quinoa Willd) Bran.

Plant Foods Hum Nutr

January 2025

Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China.

Article Synopsis
  • Hepatocellular carcinoma (HCC) is a common and aggressive cancer with high recurrence rates, making new treatment options crucial.
  • Quinoa bran protein hydrolysate (QBPP) has been found to effectively inhibit the growth of HCC cells while showing little toxicity to normal liver cells.
  • QBPP works by inducing apoptosis and preventing HCC cell migration, suggesting it could be a promising dietary supplement for HCC prevention and treatment.
View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Yellow seed coat color (SCC) is linked to higher seed oil content (SOC) and lower seed lignocellulose content (SLC), but no dominant yellow SCC genes were previously known.
  • A dominant yellow SCC gene called N53-2 was identified in a study using a double haploid population from N53-2 and a black seed coat material, revealing thousands of expression quantitative trait loci (eQTLs) and specific trans-eQTL hotspots.
  • Transgenic experiments confirmed that the newly discovered allele produces yellow SCC seeds with significantly higher SOC and lower SLC, offering promising prospects for breeding rapeseed with desirable traits.
View Article and Find Full Text PDF

The seed coat plays a pivotal role in seed development and germination, acting as a protective barrier and mediating interac-tions with the external environment. Traditional histochemical techniques and analytical methods have provided valuable insights into seed coat composition and function. However, these methods often suffer from limitations such as indirect chemical signatures and lack of spatial resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!