Analytical models of steady-state plumes undergoing sequential first-order degradation.

Ground Water

Tetra Tech GEO, Inc., 21335 Signal Hill Plaza, Sterling, VA 20164, USA.

Published: August 2012

AI Article Synopsis

Article Abstract

An exact, closed-form analytical solution is derived for one-dimensional (1D), coupled, steady-state advection-dispersion equations with sequential first-order degradation of three dissolved species in groundwater. Dimensionless and mathematical analyses are used to examine the sensitivity of longitudinal dispersivity in the parent and daughter analytical solutions. The results indicate that the relative error decreases to less than 15% for the 1D advection-dominated and advection-dispersion analytical solutions of the parent and daughter when the Damköhler number of the parent decreases to less than 1 (slow degradation rate) and the Peclet number increases to greater than 6 (advection-dominated). To estimate first-order daughter product rate constants in advection-dominated zones, 1D, two-dimensional (2D), and three-dimensional (3D) steady-state analytical solutions with zero longitudinal dispersivity are also derived for three first-order sequentially degrading compounds. The closed form of these exact analytical solutions has the advantage of having (1) no numerical integration or evaluation of complex-valued error function arguments, (2) computational efficiency compared to problems with long times to reach steady state, and (3) minimal effort for incorporation into spreadsheets. These multispecies analytical solutions indicate that BIOCHLOR produces accurate results for 1D steady-state, applications with longitudinal dispersion. Although BIOCHLOR is inaccurate in multidimensional applications with longitudinal dispersion, these multidimensional multispecies analytical solutions indicate that BIOCHLOR produces accurate steady-state results when the longitudinal dispersion is zero. As an application, the 1D advection-dominated analytical solution is applied to estimate field-scale rate constants of 0.81, 0.74, and 0.69/year for trichloroethene, cis-1,2-dichloroethene, and vinyl chloride, respectively, at the Harris Palm Bay, FL, CERCLA site.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2011.00858.xDOI Listing

Publication Analysis

Top Keywords

analytical solutions
24
solutions indicate
12
longitudinal dispersion
12
analytical
9
sequential first-order
8
first-order degradation
8
analytical solution
8
longitudinal dispersivity
8
parent daughter
8
rate constants
8

Similar Publications

Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products.

View Article and Find Full Text PDF

A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.

View Article and Find Full Text PDF

The tissue-plasminogen activator-challenged thromboelastography provides a comprehensive assessment of fibrinolysis in the severely injured.

J Trauma Acute Care Surg

January 2025

From the Division of Acute Care Surgery, Department of Surgery (E.R.M., T.B.M., C.M.W., H.S., R.H., C.D.B.), University of Nebraska Medical Center, Omaha, Nebraska; Department of Surgery (H.B.M.), AdventHealth Porter; Department of Surgery (E.E.M., J.G.C.), Ernest E Moore Shock Trauma Center at Denver Health, Denver; Department of Surgery (E.E.M.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Hunter College (I.M.B.), New York, New York; Sauaia Statistical Solutions, LLC (A.S.), Denver, Colorado; and Department of Cellular and Integrative Physiology (F.I.G., C.D.B.), University of Nebraska Medical Center, Omaha, Nebraska.

Background: Tissue-plasminogen activator-challenged thromboelastography (tPA-TEG) predicts massive transfusion and mortality better than conventional rapid thromboelastography (rTEG), with little concordance between their lysis values (LY30). We hypothesized that the main fibrinolytic inhibitors plasminogen activator inhibitor-1 (PAI-1) and α-2 antiplasmin (A2AP), as well as markers of fibrinolytic activation (plasmin-antiplasmin [PAP], tPA-PAI-1 complex, tPA activity), would correlate more strongly with tPA-TEG versus rTEG LY30 and may explain the recent findings of four distinct fibrinolytic phenotypes in trauma based on these two TEG methodologies.

Methods: Adult trauma patients (n = 56) had tPA-TEG, rTEG, and plasma obtained on arrival to the emergency department with institutional review board approval.

View Article and Find Full Text PDF

In the present research, an attempt has been made to develop a new thin film microextraction method for the extraction of several polycyclic aromatic hydrocarbons from aqueous samples collected from different industrial units prior to their analysis by gas chromatography combined with a flame ionization detector. In this approach, a thin iron mesh was modified by the formation of iron(II) oxinate on its surface and used for the extraction of analytes without an additional sorbent. For this purpose, first, the mesh was immersed in a sulfuric acid solution and then transferred into an 8-hydroxy quinoline (oxine) solution dissolved in ammonia solution.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline, significantly impairing the daily life of elderly individuals. The low abundance of blood-based biomarkers in AD necessitates higher analytical technique requirements. Herein, one novel iridium-based ECL self-enhanced nanoemitter (TPrA@Ir-SiO) was unprecedentedly reported, and it was further used to construct an ultrasensitive ECL magnetic immunosensor by a multiple-signal amplification strategy to unequally sensitively and accurately detect the AD blood-based biomarker (P-tau181) in this work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!