The increasing use of three-dimensional (3D) cell culture is because it reproduces in vitro results similar to in vivo results. Multicellular tumor spheroids generated in vitro exhibit important characteristics of avascular tumors, mainly with respect to tumor physiology and microenvironment. The interaction among cells in a tridimensional culture environment enhances cell differentiation and leads to luminal formation in some breast-derived cell cultures. The present work describes a method that permits luminal formation in breast adenocarcinoma cell (MCF-7)-derived spheroids in a 3D environment. In the proposed model, several relevant parameters, such as cell survival, apoptosis, autophagy, and E-cadherin expression, were analyzed to understand the organization of MCF-7 cells during different culture phases, including luminal and bud formation.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tec.2011.0260DOI Listing

Publication Analysis

Top Keywords

mcf-7 cells
8
luminal formation
8
cell
5
cells three-dimensional
4
three-dimensional model
4
model study
4
study human
4
human breast
4
breast cancer
4
cancer increasing
4

Similar Publications

Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.

View Article and Find Full Text PDF

Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.

Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.

View Article and Find Full Text PDF

Evaluating the anticancer effects of carnosic acid against breast cancer: An In Vitro investigation.

Tissue Cell

January 2025

Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran. Electronic address:

Background: Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10).

Materials And Methods: The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA.

View Article and Find Full Text PDF

Design, synthesis, and biological evaluation of N-(2-(adamantan-1-yl)-1H-indol-5-yl)-N-(substituent)-1,2-dicarboxamides as anticancer agents targeting Nur77-mediated endoplasmic reticulum stress.

Bioorg Chem

December 2024

State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China. Electronic address:

Targeting endoplasmic reticulum (ER) stress-induced apoptosis has attracted considerable research interest in anti-cancer drug development. Nur77 is a potential therapeutic target in many cancers and several Nur77 modulators have recently been identified as effective anticancer agents by activating ER stress. As an ongoing work, this study reports a new series of novel N-(2-(adamantan-1-yl)-1H-indol-5-yl)-N-(substituent)-1,2-dicarboxamides as potent Nur77 modulators that cause ER stress-induced apoptosis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression level of the target genes in the cell. Breast cancer is responsible for the majority of cancer-related deaths among women globally. It has been proven that deregulated miRNAs may play an essential role in the progression of breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!