²²²Rn is a natural radionuclide that is commonly used as tracer to quantify groundwater discharge to streams, rivers, lakes, and coastal environments. The use of sporadic point measurements provides little information about short- to medium-term processes (hours to weeks) at the groundwater-surface water interface. Here we present a novel method for high-resolution autonomous, and continuous, measurement of ²²²Rn in rivers and streams using a silicone diffusion membrane system coupled to a solid-state radon-in-air detector (RAD7). In this system water is pumped through a silicone diffusion tube placed inside an outer air circuit tube that is connected to the detector. ²²²Rn diffuses from the water into the air loop, and the ²²²Rn activity in the air is measured. By optimizing the membrane tube length, wall thickness, and water flow rates through the membrane, it was possible to quantify radon variations over times scales of about 3 h. The detection limit for the entire system with 20 min counting was 18 Bq m⁻³ at the 3σ level. Deployment of the system on a small urban stream showed that groundwater discharge is dynamic, with changes in ²²²Rn activity doubling on the scale of hours in response to increased stream flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es202683z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!