High-resolution angular and velocity distributions for neutral analytes (tryptophan and poly-tryptophan) and matrix (2,4,6-trihydroxyacetophenon, THAP) are measured by using 355 nm laser desorption. The information suggests that two separate mechanisms dominate the angular and velocity distributions at the beginning and before the end of desorption. A molecular jet-like isentropic expansion dominates the plume expansion at the beginning of desorption. This only occurs at high surface temperature, thus resulting in a large velocity normal to the surface and a very narrow angular distribution. Most of the analytes are produced under these conditions. Before the end of desorption, the surface temperature decreases and the mechanism of thermal desorption at low vapor pressure takes over. The velocities become small and the angular distribution is close to cosθ. Only a very small amount of analytes are generated under these conditions. Compared to tryptophan, poly-tryptophan has a much narrower angular distribution, thereby suggesting that it is only produced at the higher surface temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201100445 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Information Communication, Army Academy of Armored Forces, Beijing, 100072, China.
Generating computer-generated holograms (CGHs) for 3D scenes by learning-based methods can reconstruct arbitrary 3D scenes with higher quality and faster speed. However, the homogenization and difficulty of obtaining 3D high-resolution datasets seriously limit the generalization ability of the model. A novel approach is proposed to train 3D encoding models based on convolutional neural networks (CNNs) using 2D image datasets.
View Article and Find Full Text PDFBrain Dev
December 2024
Division of Neurology, Saitama Children's Medical Center, 1-2 Chuo-ku Saitama-shi, Saitama 330-8777, Japan.
Purpose: This study aimed to elucidate the distribution of intracranial gamma-aminobutyric acid (GABA) receptors in patients with infantile epileptic spasms syndrome (IESS) of normal brain MRI findings using I-iomazenil single-photon emission computed tomography (IMZ-SPECT).
Methods: This retrospective study compared IMZ-SPECT images from 20 patients with IESS of unknown etiology with normal brain MRI (unknown IESS group) and 23 patients with developmentally normal epilepsy of the same age (developmentally normal group). A three-dimensional stereotactic region of interest (ROI) template was used to divide the brain into 24 segments (left and right callosomarginal, precentral, central, parietal, angular, temporal, posterior cerebral, pericallosal, lenticular nucleus, thalamus, hippocampus, and cerebellum), and the mean accumulation of I-iomazenil in each ROI was calculated.
J Bone Miner Res
December 2024
Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY.
Opportunistic screening is essential to improve the identification of individuals with osteoporosis. Our group has utilized image texture features to assess bone quality using clinical MRIs. We have previously demonstrated that greater heterogeneity of MRI texture related to history of fragility fractures, lower bone density, and worse microarchitecture.
View Article and Find Full Text PDFJ Bone Joint Surg Am
December 2024
Pediatric Orthopaedic Unit, Pediatric Surgery Service, Geneva University Hospitals, Geneva, Switzerland.
Background: Transphyseal hematogenous osteomyelitis (THO) is a common infectious condition, being present in 25% of patients with hematogenous osteomyelitis. A large proportion of pediatric hematogenous osteomyelitis infections can spread through the growth cartilage and therefore may be potentially responsible for growth disorders, leading to limb-length discrepancy or angular deformities. The purpose of the present study was to identify both the prevalence of complications caused by transphyseal osteomyelitis and factors influencing their occurrence.
View Article and Find Full Text PDFCommun Biol
December 2024
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057, Zurich, Switzerland.
Proper oxygen delivery through the microvasculature to injury site is essential to ensure the metabolic cascade during wound healing. Adaptation of vascular structure and oxygenation is key to unravel the regulation of blood perfusion, oxygen distribution and new tissue formation. Yet, visualizing micrometabolic responses at large scale in unperturbed living tissue remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!