Amino acids, as a particularly important type of biomolecules, have been used as multifunctional templates to intelligently construct mesoporous TiO(2) hollow structures through a simple solvothermal reaction. The structure-directing behaviors of various amino acids were systematically investigated, and it was found that these biomolecules possess the general capability to assist mesoporous TiO(2) hollow-sphere formation. At the same time, the nanostructures of the obtained TiO(2) are highly dependent on the isoelectric points (pI) of amino acids. Their molecular-structure variations can lead to pI differences and significantly influence the final TiO(2) morphologies. Higher-pI amino acids (e.g., L-lysine and L-arginine) have better structure-directing abilities to generate nanosheet-assembled hollow spheres and yolk/shell structures. The specific morphologies and mesopore size of these novel hollow structures can also be tuned by adjusting the titanium precursor concentration. Heat treatment in air and vacuum was further conducted to transform the as-prepared structures to porous nanoparticle-assembled hollow TiO(2) and TiO(2)/carbon nanocomposites, which may be potentially applied in the fields of photocatalysts, dye-sensitized solar cells, and Li batteries. This study provides some enlightenment on the design of novel templates by taking advantage of biomolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201101314 | DOI Listing |
Genet Test Mol Biomarkers
January 2025
PTC Therapeutics Germany GmbH, Frankfurt, Germany.
The main objective of this prospective, multicenter study (REVEAL-CP) was to test children with cerebral palsy-like signs and symptoms for raised 3--methyldopa (3-OMD) blood levels, a biomarker for aromatic L-amino acid decarboxylase deficiency (AADCd). A secondary objective was to characterize the molecular basis for the defective aromatic L-amino acid decarboxylase (AADC) gene product. Patients were identified in pediatric secondary and tertiary care hospitals through database searches and personal communication.
View Article and Find Full Text PDFChem Rev
January 2025
Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany.
Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India.
The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λ = 345 nm, λ = 430 nm) compared to the monomer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!