2-Aminoethoxydiphenyl borate (2-APB) has recently been demonstrated to inhibit gap junction (GJ) channels, whereas the underlying mechanisms are still unknown. Using mouse TM₄ Sertoli cell which expresses connexin43 (Cx43), we explored the effects of 2-APB and its analogues on dye-coupling through junctional channels formed by Cx43 and on expression of Cx43. Exposure of the cells to 2-APB (1-50 µM) and one of its analogues diphenylboronic anhydride (DPBA) (1-30 µM) for 4 h leads to a significant decrease in dye coupling of GJ in a concentration-dependent manner. The inhibitory effects of 2-APB and DPBA are reversible since decreased GJ coupling resumes after the two compounds are washed out. The disfunction of GJ induced by 2-APB and DPBA is associated with a decrease in total amount of Cx43 protein and number of GJs on the cell membrane. 2-APB and DPBA do not alter Cx43 phosphorylation state and the level of Cx43 mRNA expression. The loss of Cx43 protein is prevented by either lysosomal or proteasomal inhibitor, suggesting that the decrease in Cx43 results from a 2-APB or DPBA-enhanced degradation of Cx43. The present results indicate that 2-APB and DPBA inhibit GJ communication through decreasing Cx43 expression in TM₄ cells.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.34.1390DOI Listing

Publication Analysis

Top Keywords

2-apb dpba
16
cx43
10
2-aminoethoxydiphenyl borate
8
diphenylboronic anhydride
8
tm₄ sertoli
8
2-apb
8
effects 2-apb
8
cx43 expression
8
cx43 protein
8
dpba
5

Similar Publications

Pentameric TRPV3: An artifact or a clue to channel function?

Cell Calcium

December 2023

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Electronic address:

View Article and Find Full Text PDF

To identify the core structure of 2-aminoethoxydiphenyl borate (2-APB) responsible for the anti-oxidative and protective effect on the ischemia/reperfusion (I/R)-induced heart injury, various 2-APB analogues were analyzed, and several antioxidant assays were performed. Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Myocardial infarct size was quantified using triphenyl tetrazolium chloride (TTC) staining.

View Article and Find Full Text PDF

Activated, procoagulant platelets shed phosphatidylserine (PS)-exposing extracellular vesicles (EVs) from their surface in a Ca- and calpain-dependent manner. These PS-exposing EVs are prothrombotic and proinflammatory and are found at elevated levels in many cardiovascular and metabolic diseases. How PS-exposing EVs are shed is not fully understood.

View Article and Find Full Text PDF

2-Aminoethoxydiphenyl borate (2-APB) has recently been demonstrated to inhibit gap junction (GJ) channels, whereas the underlying mechanisms are still unknown. Using mouse TM₄ Sertoli cell which expresses connexin43 (Cx43), we explored the effects of 2-APB and its analogues on dye-coupling through junctional channels formed by Cx43 and on expression of Cx43. Exposure of the cells to 2-APB (1-50 µM) and one of its analogues diphenylboronic anhydride (DPBA) (1-30 µM) for 4 h leads to a significant decrease in dye coupling of GJ in a concentration-dependent manner.

View Article and Find Full Text PDF

2-Aminoethoxydiphenyl borate (2-APB) analogs are potentially better vascular gap junction blockers than others widely used, but they remain to be characterized. Using whole cell and intracellular recording techniques, we studied the actions of 2-APB and its potent analog diphenylborinic anhydride (DPBA) on vascular smooth muscle cells (VSMCs) and endothelial cells in situ of or dissociated from arteriolar segments of the cochlear spiral modiolar artery, brain artery, and mesenteric artery. We found that both 2-APB and DPBA reversibly suppressed the input conductance (G(input)) of in situ VSMCs (IC(50) ≈ 4-8 μM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!