Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice.

J Clin Invest

Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.

Published: October 2011

While there is evidence that specific T cell populations can promote the growth of established tumors, instances where T cell activity causes neoplasms to arise de novo are infrequent. Here, we employed two conditional mutagenesis systems to delete the TGF-β signaling pathway component Smad4 in T cells and observed the spontaneous development of massive polyps within the gastroduodenal regions of mice. The epithelial lesions contained increased levels of transcripts encoding IL-11, IL-6, TGF-β, IL-1β, and TNF-α, and lamina propria cells isolated from lesions contained abundant IL-17A+CD4+ T cells. Furthermore, we found that Smad4 deficiency attenuated TGF-β-mediated in vitro polarization of FoxP3+CD4+ T cells, but not IL-17A+CD4+ T cells, suggesting that the epithelial lesions may have arisen as a consequence of unchecked Th17 cell activity. Proinflammatory cytokine production likely accounted for the raised levels of IL-11, a cytokine known to promote gastric epithelial cell survival and hyperplasia. Consistent with IL-11 having a pathogenic role in this model, we found evidence of Stat3 activation in the gastric polyps. Thus, our data indicate that a chronic increase in gut Th17 cell activity can be associated with the development of premalignant lesions of the gastroduodenal region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195457PMC
http://dx.doi.org/10.1172/JCI45114DOI Listing

Publication Analysis

Top Keywords

cell activity
12
smad4 deficiency
8
development premalignant
8
epithelial lesions
8
lesions contained
8
il-17a+cd4+ cells
8
th17 cell
8
cells
6
lesions
5
cell
5

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

The microenvironment cell index is a novel indicator for the prognosis and therapeutic regimen selection of cancers.

J Transl Med

January 2025

Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.

Background: It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC).

Methods: The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis.

View Article and Find Full Text PDF

Invasiveness of pituitary adenoma is the main cause of its poor prognosis, mechanism of which remains largely unknown. In this study, the differential proteins between invasive and non-invasive pituitary tumors (IPA and NIPA) were identified by TMT labeled quantitative proteomics. The differential metabolites in venous bloods from patients with IPA and NIPA were analyzed by untargeted metabolomics.

View Article and Find Full Text PDF

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!