The rapid release of tight-binding inhibitors from dead-end ribulose-bisphosphate carboxylase/oxygenase (Rubisco) complexes requires the activity of Rubisco activase, an AAA+ ATPase that utilizes chemo-mechanical energy to catalyze the reactivation of Rubisco. Activase is thought to play a central role in coordinating the rate of CO(2) fixation with the light reactions of photosynthesis. Here, we present a 1.9 Å crystal structure of the C-domain core of creosote activase. The fold consists of a canonical four-helix bundle, from which a paddle-like extension protrudes that entails a nine-turn helix lined by an irregularly structured peptide strand. The residues Lys-313 and Val-316 involved in the species-specific recognition of Rubisco are located near the tip of the paddle. An ionic bond between Lys-313 and Glu-309 appears to stabilize the glycine-rich end of the helix. Structural superpositions onto the distant homolog FtsH imply that the paddles extend away from the hexameric toroid in a fan-like fashion, such that the hydrophobic sides of each blade bearing Trp-302 are facing inward and the polar sides bearing Lys-313 and Val-316 are facing outward. Therefore, we speculate that upon binding, the activase paddles embrace the Rubisco cylinder by placing their hydrophobic patches near the partner protein. This model suggests that conformational adjustments at the remote end of the paddle may relate to selectivity in recognition, rather than specific ionic contacts involving Lys-313. Additionally, the superpositions predict that the catalytically critical Arg-293 does not interact with the bound nucleotide. Hypothetical ring-ring stacking and peptide threading models for Rubisco reactivation are briefly discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195603PMC
http://dx.doi.org/10.1074/jbc.C111.289595DOI Listing

Publication Analysis

Top Keywords

rubisco activase
12
ribulose-bisphosphate carboxylase/oxygenase
8
carboxylase/oxygenase rubisco
8
lys-313 val-316
8
rubisco
7
activase
5
atomic resolution
4
resolution x-ray
4
x-ray structure
4
structure substrate
4

Similar Publications

Heat stress affects various components of photosynthetic machinery of which Rubisco activation inhibition due to heat sensitive Rubisco activase (RCA) is the most prominent. Detailed comparison of RCA coding genes identified a tandem duplication event in the grass family lineage where the duplicated genes showed very different evolutionary pattern. One of the two genes showed high level of sequence conservation whereas the second copy, although present only 1.

View Article and Find Full Text PDF

Synergistic role of Rubisco inhibitor release and degradation in photosynthesis.

New Phytol

December 2024

Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians University Munich, Martinsried, D-82152, Germany.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) exhibits catalytic promiscuity, resulting in error-prone reactions and the formation of inhibitory sugar phosphates. Specifically, Xylulose-1,5-bisphosphate (XuBP) acts as an inhibitor by binding to the active site of Rubisco, thereby impairing its catalytic function. Thermolabile Rubisco activase (Rca) facilitates the release of such inhibitors, including XuBP, by remodelling Rubisco.

View Article and Find Full Text PDF

In addition to leaves, photosynthesis can occur in other green plant organs, including developing seeds of many crops. While the majority of studies examining photosynthesis are concentrated on the leaf level, the role of other green tissues in the production of total photoassimilates has been largely overlooked. The present work studies the photosynthetic behavior of leaves and non-foliar (pericarps, coats, and cotyledons) organs of pea ( L.

View Article and Find Full Text PDF

Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site.

View Article and Find Full Text PDF

Low nitrogen priming enhances Rubisco activation and allocation of nitrogen to the photosynthetic apparatus as an adaptation to nitrogen-deficit stress in wheat seedling.

J Plant Physiol

December 2024

Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, PR China. Electronic address:

Reducing nitrogen (N) application is crucial in addressing the low N utilization efficiency (NUE) and the risks of environmental pollution in wheat production. Improving low N (LN) tolerance in wheat can help balance the conflict between wheat growth and reduced N fertilization. Hydroponic experiments were conducted using Yangmai158 (LN-tolerant) and Zaoyangmai (LN-sensitive) cultivars to study whether LN priming (LNP) in the 3-leaf stage can improve the photosynthetic capacity of wheat seedlings under N-deficit stress at the 5-leaf stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!