AI Article Synopsis

  • The Mph1 protein in budding yeast is similar to the human FANCM protein and has the ability to disrupt D-loop structures, which helps prevent chromosome crossovers during homologous recombination.
  • Mph1 is involved in repairing DNA replication forks and can reverse these forks as well as process the Holliday junction through DNA branch migration.
  • The protein also unwinds specific DNA structures related to the D-loop, highlighting its crucial role in fixing damaged replication forks and providing insights into its mechanisms.

Article Abstract

The budding yeast Mph1 protein, the putative ortholog of human FANCM, possesses a 3' to 5' DNA helicase activity and is capable of disrupting the D-loop structure to suppress chromosome arm crossovers in mitotic homologous recombination. Similar to FANCM, genetic studies have implicated Mph1 in DNA replication fork repair. Consistent with this genetic finding, we show here that Mph1 is able to mediate replication fork reversal, and to process the Holliday junction via DNA branch migration. Moreover, Mph1 unwinds 3' and 5' DNA Flap structures that bear key features of the D-loop. These biochemical results not only provide validation for a role of Mph1 in the repair of damaged replication forks, but they also offer mechanistic insights as to its ability to efficiently disrupt the D-loop intermediate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185188PMC
http://dx.doi.org/10.1016/j.dnarep.2011.08.002DOI Listing

Publication Analysis

Top Keywords

branch migration
8
mph1 protein
8
replication fork
8
mph1
6
dna
5
processing dna
4
dna structures
4
structures dna
4
dna unwinding
4
unwinding branch
4

Similar Publications

Humans have more than 270,000 lncRNAs. Among these, lncRNA HOXA-AS2 is considered a transformative gene involved in various cellular processes, including cell proliferation, apoptosis, migration, and invasion. Thus, it can be regarded as a potential tumor marker for both diagnosis and prognosis.

View Article and Find Full Text PDF

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Breast cancer (BC) is a leading cause of cancer-related mortality among women worldwide, with incidence rates rising globally. Urolithin B (UB), a bioactive metabolite of ellagic acid, has demonstrated promising anticancer effects in various cancer models. This study aimed to evaluate the effects of UB on the growth, angiogenesis, and metastasis of BC cells using both in vivo and in vitro approaches.

View Article and Find Full Text PDF

Trigger inducible tertiary lymphoid structure formation using covalent organic frameworks for cancer immunotherapy.

Nat Commun

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.

The discovery of tertiary lymphoid structures (TLS) within tumor tissues provides a promising avenue to promote the efficacy of cancer immunotherapy. Yet, the lack of effective strategies to induce TLS formation poses a substantial obstacle. Thus, the exploration of potential inducers for TLS formation is of great interest but remains challenging.

View Article and Find Full Text PDF

There are numerous reasons for concrete buildings cracks, like stress loads, material flaws, and environmental impacts. It is important to find and investigate the concrete cracks during analyzing the safety and structural soundness of buildings, bridges, and other infrastructure. However, there are many models available for concrete crack detection, an efficient approach is needed because the existing methods often have flaws like overfitting, high computational complexity, and noise sensitivity, which can lead to accurate crack detection and classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!