A porous polymer monolithic column for solid-phase microextraction and chemiluminescence detection was integrated into a simple microfluidic chip for the extraction and determination of catechins in green tea. The porous polymer was prepared by poly(glycidyl methacrylate-co-ethylene dimethacrylate) and modified with ethylenediamine. Catechins can be concentrated in the porous polymer monolithic column and react with potassium permanganate to give chemiluminescence. The microfluidic chip is reusable with high sensitivity and very low reagent consumption. The on-line preconcentration and detection can be realized without an elution step. The enrichment factor was calculated to be about 20 for catechins. The relative chemiluminescence intensity increased linearly with concentration of catechin from 5.0 × 10(-9) to 1.0 × 10(-6) M and the limit of detection was 1.0 × 10(-9) M. The proposed method was applied to determine catechin in green tea. The recoveries are from 90% to 110% which benefits the actual application for green tea samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1an15530j | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFNat Chem
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
sp-carbon-linked covalent organic frameworks (spc-COFs) are crystalline porous polymers with repeat organic units linked by sp carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline spc-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.
C aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Nanomaterials Laboratory, Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, India.
Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China.
The sensitive and selective identification of nitroaromatic explosives and industrially ubiquitous nitrates, which are harmful to the environment, is crucial from the viewpoints of security and environmental remediation. New multifunctional fluorescent porous materials that can sense nitro-explosives and nitrates are under continuous development. To this end, this study synthesizes 3,10,15-/-3,10,16-tribromotrinaphtho[3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!