Mouse model of Timothy syndrome recapitulates triad of autistic traits.

Proc Natl Acad Sci U S A

Department of Molecular and Cellular Physiology, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.

Published: September 2011

Autism and autism spectrum disorder (ASD) typically arise from a mixture of environmental influences and multiple genetic alterations. In some rare cases, such as Timothy syndrome (TS), a specific mutation in a single gene can be sufficient to generate autism or ASD in most patients, potentially offering insights into the etiology of autism in general. Both variants of TS (the milder TS1 and the more severe TS2) arise from missense mutations in alternatively spliced exons that cause the same G406R replacement in the Ca(V)1.2 L-type calcium channel. We generated a TS2-like mouse but found that heterozygous (and homozygous) animals were not viable. However, heterozygous TS2 mice that were allowed to keep an inverted neomycin cassette (TS2-neo) survived through adulthood. We attribute the survival to lowering of expression of the G406R L-type channel via transcriptional interference, blunting deleterious effects of mutant L-type channel overactivity, and addressed potential effects of altered gene dosage by studying Ca(V)1.2 knockout heterozygotes. Here we present a thorough behavioral phenotyping of the TS2-neo mouse, capitalizing on this unique opportunity to use the TS mutation to model ASD in mice. Along with normal general health, activity, and anxiety level, TS2-neo mice showed markedly restricted, repetitive, and perseverative behavior, altered social behavior, altered ultrasonic vocalization, and enhanced tone-cued and contextual memory following fear conditioning. Our results suggest that when TS mutant channels are expressed at levels low enough to avoid fatality, they are sufficient to cause multiple, distinct behavioral abnormalities, in line with the core aspects of ASD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174658PMC
http://dx.doi.org/10.1073/pnas.1112667108DOI Listing

Publication Analysis

Top Keywords

timothy syndrome
8
l-type channel
8
behavior altered
8
mouse model
4
model timothy
4
syndrome recapitulates
4
recapitulates triad
4
triad autistic
4
autistic traits
4
autism
4

Similar Publications

Timothy syndrome type 1 (TS1), a malignant variant of Long QT Syndrome, is caused by L-type Ca2+ Channel (LTCC) inactivation defects secondary to the p.Gly406Arg mutation in the CACNA1C gene. Leveraging on the experimental in vitro data from our TS1 knock-in swine model and their wild-type (WT) littermates, we first developed a mathematical model of WT large white swine ventricular cardiomyocyte electrophysiology that reproduces a wide range of experimental data, including ionic current properties, action potential (AP) dynamics, and handling.

View Article and Find Full Text PDF

A Natural History Study of Timothy Syndrome.

Orphanet J Rare Dis

November 2024

Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, MD, USA.

Article Synopsis
  • - Timothy syndrome, caused by variants in the CACNA1C gene, was originally recognized for its cardiac symptoms (long QT syndrome) and physical abnormalities (syndactyly), but more recent research has unveiled a wider range of symptoms associated with different CACNA1C variants.
  • - A survey was conducted with parents of Timothy syndrome patients to gather information on various symptoms, grouping participants by genetic type and initial diagnosis to compare their conditions.
  • - The study found that patients commonly show both cardiac and extra-cardiac symptoms, such as neurodevelopmental issues and respiratory problems, regardless of their classification, indicating that the current understanding of "non-syndromic" cases may not fully capture the complexity of the disease.
View Article and Find Full Text PDF

A case of pioneering subcutaneous implantable cardioverter defibrillator intervention in Timothy syndrome.

BMC Pediatr

November 2024

Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China.

Article Synopsis
  • - A 9-year-old with Timothy syndrome, a rare genetic condition linked to the CACNA1c gene, underwent subcutaneous implantable cardioverter defibrillator (S-ICD) implantation, marking the youngest known case in mainland China.
  • - While the patient showed no ventricular arrhythmias during hospitalization or follow-up, this result alone doesn't confirm the safety of S-ICD for young TS patients.
  • - Further research is needed to assess long-term effects of S-ICD and explore gene therapy options to improve treatment strategies for Timothy syndrome.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a G406R knockin mouse model that exhibits TS features, including hypoglycemia, but surprisingly does not show increased beta cell activity or hyperinsulinism.
  • * The study unveils alternative mechanisms for hypoglycemia, such as impaired hormone responses and disrupted hypothalamic regulation of glucose levels, enhancing our understanding of how mutant channels impact TS.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!