The tumour suppressor p53 negatively controls cell cycle progression in response to perturbed ribosome biogenesis in mammalian cells, thus coordinating growth with proliferation. Unlike mammalian cells, p53 is not involved in the growth control of proliferation in yeasts and flies. We investigated whether a p53-independent mechanism of response to inadequate ribosome biogenesis rate is also present in mammalian cells. We studied the effect of specific inhibition of rRNA synthesis on cell cycle progression in human cancer cell lines using the small-interfering RNA procedure to silence the POLR1A gene, which encodes the catalytic subunit of RNA polymerase I. We found that interference of POLR1A inhibited the synthesis of rRNA and hindered cell cycle progression in cells with inactivated p53, as a consequence of downregulation of the transcription factor E2F-1. Downregulation of E2F-1 was due to release of the ribosomal protein L11, which inactivated the E2F-1-stabilising function of the E3 ubiquitin protein ligase MDM2. These results demonstrated the existence of a p53-independent mechanism that links cell growth to cell proliferation in mammalian cells, and suggested that selective targeting of the RNA polymerase I transcription machinery might be advisable to hinder proliferation of p53-deficient cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.086074DOI Listing

Publication Analysis

Top Keywords

mammalian cells
16
p53-independent mechanism
12
cell cycle
12
cycle progression
12
inhibition rrna
8
cell
8
cell growth
8
growth cell
8
cell proliferation
8
ribosome biogenesis
8

Similar Publications

Over recent years, the retina has been increasingly investigated as a potential biomarker for dementia. A number of studies have looked at the effect of Alzheimer's disease (AD) pathology on the retina and the associations of AD with visual deficits. However, while OCT-A has been explored as a biomarker of cerebral small vessel disease (cSVD), studies identifying the specific retinal changes and mechanisms associated with cSVD are lacking.

View Article and Find Full Text PDF

Genes related to neural tube defects and glioblastoma.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.

There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value.

View Article and Find Full Text PDF

Transmission of Zika virus (ZIKV) has been reported in 92 countries and the geographical spread of invasive virus-borne vectors has increased in recent years. Arboviruses naturally survive between vertebrate hosts and arthropod vectors. Transmission success requires the mosquito to feed on viraemic hosts.

View Article and Find Full Text PDF

The prevalence of Alzheimer's disease (AD) is increasing as society ages. The details of AD pathogenesis have not been fully elucidated, and a comprehensive gene expression analysis of the process leading up to the onset of AD would be helpful for understanding the mechanism. We performed an RNA sequencing analysis on a cohort of 1227 Japanese blood samples, representing 424 AD patients, 543 individuals with mild cognitive impairment (MCI), and 260 cognitively normal (CN) individuals.

View Article and Find Full Text PDF

Muscarinic acetylcholine receptor 3 localized to primary endothelial cilia regulates blood pressure and cognition.

Sci Rep

January 2025

Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.

We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!