A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. | LitMetric

Brain tumors frequently recur or progress as focal masses after treatment with ionizing radiation. However, the mechanisms underlying the repopulation of tumor cells after radiation have remained unclear. In this study, we show that cellular signaling from Abelson murine leukemia viral oncogene homolog (Abl) to protein kinase Cδ (PKCδ) is crucial for fractionated-radiation-induced expansion of glioma-initiating cell populations and acquisition of resistance to anticancer treatments. Treatment of human glioma cells with fractionated radiation increased Abl and PKCδ activity, expanded the CD133-positive (CD133(+)) cell population that possesses tumor-initiating potential and induced expression of glioma stem cell markers and self-renewal-related proteins. Moreover, cells treated with fractionated radiation were resistant to anticancer treatments. Small interfering RNA (siRNA)-mediated knockdown of PKCδ expression blocked fractionated-radiation-induced CD133(+) cell expansion and suppressed expression of glioma stem cell markers and self-renewal-related proteins. It also suppressed resistance of glioma cells to anticancer treatments. Similarly, knockdown of Abl led to a decrease in CD133(+) cell populations and restored chemotherapeutic sensitivity. It also attenuated fractionated-radiation-induced PKCδ activation, suggesting that Abl acts upstream of PKCδ. Collectively, these data indicate that fractionated radiation induces an increase in the glioma-initiating cell population, decreases cellular sensitivity to cancer treatment and implicates activation of Abl-PKCδ signaling in both events. These findings provide insights that might prove pivotal in the context of ionising-radiation-based therapeutic interventions for brain tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.080119DOI Listing

Publication Analysis

Top Keywords

anticancer treatments
12
fractionated radiation
12
cd133+ cell
12
fractionated-radiation-induced expansion
8
expansion glioma-initiating
8
cancer treatment
8
brain tumors
8
glioma-initiating cell
8
cell populations
8
glioma cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!