A single-chip electrochemical method based on impedance measurements in resonance mode has been employed to study lipid monolayer and bilayer formation on hydrophobic alkanethiolate and SiO(2) substrates, respectively. The processes were monitored by temporally resolving changes in interfacial capacitance and resistance, revealing information about the rate of formation, coverage, and defect density (quality) of the layers at saturation. The resonance-based impedance measurements were shown to reveal significant differences in the layer formation process of bilayers made from (i) positively charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC), (ii) neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on SiO(2), and (iii) monolayers made from POEPC on hydrophobic alkanethiolate substrates. The observed responses were represented with an equivalent circuit, suggesting that the differences primarily originate from the presence of a conductive aqueous layer between the lipid bilayers and the SiO(2). In addition, by adding the ion channel gramicidin D to bilayers supported on SiO(2), channel-mediated charge transport could be measured with high sensitivity (resolution around 1 pA).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac201273tDOI Listing

Publication Analysis

Top Keywords

impedance measurements
12
bilayer formation
8
ion channel
8
charge transport
8
hydrophobic alkanethiolate
8
lipid
5
resonance-mode electrochemical
4
electrochemical impedance
4
measurements silicon
4
silicon dioxide
4

Similar Publications

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

: This study sought to assess how body mass (BM) and body composition in post-COVID-19 elderly adults were affected by 8 weeks of resistance training. An additional goal was to determine the agreement between Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA) in elderly people. : Participants were randomly assigned to an intervention Group, which engaged in 8 weeks of resistance training, and a Control Group, which was advised to maintain their usual activity levels.

View Article and Find Full Text PDF

Pregnant women with congenital heart disease carry a high risk of complications, especially when cardiac function is suboptimal. Increasing evidence suggests that impaired right ventricular (RV) function has a negative effect on placental function, possibly through venous congestion. We report a case series of hepatic and renal venous flow patterns in pregnant women with right ventricular dysfunction after repaired Tetralogy of Fallot (ToF), relative to those observed in normal pregnancy and preeclampsia.

View Article and Find Full Text PDF

During the interaction process of a manipulator executing a grasping task, to ensure no damage to the object, accurate force and position control of the manipulator's end-effector must be concurrently implemented. To address the computationally intensive nature of current hybrid force/position control methods, a variable-parameter impedance control method for manipulators, utilizing a gradient descent method and Radial Basis Function Neural Network (RBFNN), is proposed. This method employs a position-based impedance control structure that integrates iterative learning control principles with a gradient descent method to dynamically adjust impedance parameters.

View Article and Find Full Text PDF

A Study on the Development of Real-Time Chamber Contamination Diagnosis Sensors.

Sensors (Basel)

December 2024

Department of Energy & Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea.

Plasma processes are critical for achieving precise device fabrication in semiconductor manufacturing. However, polymer accumulation during processes like plasma etching can cause chamber contamination, adversely affecting plasma characteristics and process stability. This study focused on developing a real-time sensor system for diagnosing chamber contamination by quantitatively monitoring polymer accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!