Fabrication of spiropyran-containing thin film sensors used for the simultaneous identification of multiple metal ions.

Langmuir

Department of Chemistry, Faculty of Engineering, and the Center for Nanoscale Science and Engineering, University of Georgia, Athens, Georgia 30602, USA.

Published: October 2011

AI Article Synopsis

  • The study presents a methacrylate-based copolymer that acts as a colorimetric sensor for detecting multiple metal ions simultaneously.
  • Using UV-vis absorption spectroscopy and displacement studies, the research investigates the binding affinities of different metal ions to merocyanine.
  • The analysis of the distinct spectral responses enables the application of partial least-squares discriminant analysis (PLS-DA) and partial least-squares regression (PLS) for qualitative and quantitative identification of metal ions in varying concentrations.

Article Abstract

In this article, a methacrylate-based spiropyran-containing copolymer was used as a colorimetric sensor to identify multiple metal ions simultaneously. Through UV-vis absorption spectroscopy, the relative binding affinity of merocyanine to each metal ion was investigated by displacement studies of a bound metal ion with a second metal ion of a higher binding affinity. We also show that because each metal ion gives rise to a distinct spectral response, partial least-squares discriminant analysis (PLS-DA) can be used to analyze the UV-vis absorbance spectra to identify the two metal ions that are present in solution at varying concentrations simply by dipping a coated polymer substrate into solution after irradiation. Partial least-squares regression analysis (PLS) was used to determine the metal ions in solution for several binary mixtures quantitatively. We also demonstrate that the quantitative determination depends on the relative binding preference of merocyanine to each metal ion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la202344wDOI Listing

Publication Analysis

Top Keywords

metal ion
20
metal ions
16
metal
9
multiple metal
8
relative binding
8
binding affinity
8
merocyanine metal
8
partial least-squares
8
ions solution
8
ion
5

Similar Publications

Colorimetric Xylenol Orange: A Long-Buried Aggregation-Induced Emission Dye and Restricted Rotation for Dual-Mode Sensing of pH and Metal Ions.

Anal Chem

January 2025

Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

As the third largest class of dyes in the world, triphenylmethane dyes are widely applied in colorimetric sensing. However, triphenylmethane dyes are commonly nonfluorescent, which limits their sensing applications. It is worthwhile to study the fluorescence off/on control of triphenylmethane dyes and promote the applications of triphenylmethane dyes in sensing technology.

View Article and Find Full Text PDF

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.

View Article and Find Full Text PDF

Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment.

ACS Nano

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.

Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.

View Article and Find Full Text PDF

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!