Molecular aspects of biomineralization of the echinoderm endoskeleton.

Prog Mol Subcell Biol

Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI, 53706, USA,

Published: April 2016

Echinoderms possess a rigid endoskeleton composed of calcite and small amounts of occluded organic matrix proteins. The test (i.e., the shell-like structure of adults), spines, pedicellariae, tube feet, and teeth of adults, as well as delicate endoskeletal spicules found in larvae of some classes, are the main skeletal structures. They have been intensively studied for insight into the mechanisms of biomineralization. Recent work on characterization of the mineral phase and occluded proteins in embryonic skeletal spicules shows that these simple-looking structures contain scores of different proteins, and that the mineral phase is composed of amorphous calcium carbonate (ACC), which then transforms to an anhydrous ACC and eventually to calcite. Likewise, the adult tooth shows a similar transition from hydrated ACC to anhydrous ACC to calcite during its formation, and a similar transition is likely occurring during adult spine regeneration. We speculate that: (1) the ACC precursor is a general strategy employed in biomineralization in echinoderms, (2) the numerous occluded proteins play a role in post-secretion formation of the mature biomineralized structure, and (3) proteins with "multi-valent" intrinsically disordered domains are important for formation of occluded matrix structures, and regulation of crucial matrix-mineral interactions, such as ACC to calcite transitions and polymorph selection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-21230-7_7DOI Listing

Publication Analysis

Top Keywords

mineral phase
8
occluded proteins
8
anhydrous acc
8
acc calcite
8
acc
6
proteins
5
molecular aspects
4
aspects biomineralization
4
biomineralization echinoderm
4
echinoderm endoskeleton
4

Similar Publications

Perovskite nanocrystals (NCs) with their excellent optical and semiconductor properties have emerged as primary candidates for optoelectronic applications. While extensive research has been conducted on the 3D perovskite phase, the zero-dimensional (0D) form of this promising material in the NC format remains elusive. In this paper, a new synthesis strategy is proposed.

View Article and Find Full Text PDF

Recent reconnaissance geochemical investigations have unveiled Cryogenian magmatism linked to the compressional accretionary phase, contributing to the growth of the Afif Terrane in the eastern Arabian Shield. The Cryogenian Suwaj intrusive suite, within the Afif Terrane, displays a compositional range from gabbro-diorite to tonalite-granodiorite. The uniform compositional variation is primarily due to magmatic differentiation within parental magma across multiple pulses.

View Article and Find Full Text PDF

Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil.

View Article and Find Full Text PDF

Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.

View Article and Find Full Text PDF

Phase separation plays a crucial role in many natural and industrial processes, such as the formation of clouds and minerals and the distillation of crude oil. In metals and alloys, phase separation is an important approach often utilized to improve their mechanical strength for use in construction, automobile, and aerospace manufacturing. Despite its importance in many processes, the atomic details of phase separation are largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!