Huntington's Disease: An Immune Perspective.

Neurol Res Int

Centre for Infection, Immunity and Disease Mechanisms, Biosciences School of Health Sciences and Social Care, Brunel University, West London UB8 3PH, UK.

Published: November 2011

Huntington's disease (HD) is a progressive neurodegenerative disorder that is caused by abnormal expansion of CAG trinucleotide repeats. Neuroinflammation is a typical feature of most neurodegenerative diseases that leads to an array of pathological changes within the affected areas in the brain. The neurodegeneration in HD is also caused by aberrant immune response in the presence of aggregated mutant huntingtin protein. The effects of immune activation in HD nervous system are a relatively unexplored area of research. This paper summarises immunological features associated with development and progression of HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163125PMC
http://dx.doi.org/10.1155/2011/563784DOI Listing

Publication Analysis

Top Keywords

huntington's disease
8
disease immune
4
immune perspective
4
perspective huntington's
4
disease progressive
4
progressive neurodegenerative
4
neurodegenerative disorder
4
disorder caused
4
caused abnormal
4
abnormal expansion
4

Similar Publications

Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.

View Article and Find Full Text PDF

Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.

View Article and Find Full Text PDF

Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion deletion loops (in/dels) up to ∼ 17 nucleotides (nt.) and base-base mispairs, respectively; the two complexes have overlapping specificity for small (1-2 nt.

View Article and Find Full Text PDF

Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research.

View Article and Find Full Text PDF

Effects and mechanisms of computerized cognitive training in Huntington's disease: protocol for a pilot study.

Neurodegener Dis Manag

January 2025

Turner Institute for Brain & Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing & Health Sciences, 18 Innovation Walk, Monash University, Clayton VIC 3800, Australia.

Huntington's disease (HD) causes progressive cognitive decline, with no available treatments. Computerized cognitive training (CCT) has shown efficacy in other populations, but its effects in HD are largely unknown. This pilot study will explore the effects and neural mechanisms of CCT in HD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!