PLoS One
Department of Veterans Affairs, Nashville, Tennessee, United States of America.
Published: December 2011
Background: Chemotaxis is essential for a number of physiological processes including leukocyte recruitment. Chemokines initiate intracellular signaling pathways necessary for chemotaxis through binding seven transmembrane G protein-couple receptors. Little is known about the proteins that interact with the intracellular domains of chemokine receptors to initiate cellular signaling upon ligand binding. CXCR2 is a major chemokine receptor expressed on several cell types, including endothelial cells and neutrophils. We hypothesize that multiple proteins interact with the intracellular domains of CXCR2 upon ligand stimulation and these interactions comprise a "chemosynapse", and play important roles in transducing CXCR2 mediated signaling processes.
Methodology/principal Findings: In an effort to define the complex of proteins that assemble upon CXCR2 activation to relay signals from activated chemokine receptors, a proteomics approach was employed to identify proteins that co-associate with CXCR2 with or without ligand stimulation. The components of the CXCR2 "chemosynapse" are involved in processes ranging from intracellular trafficking to cytoskeletal modification. IQ motif containing GTPase activating protein 1 (IQGAP1) was among the novel proteins identified to interact directly with CXCR2. Herein, we demonstrate that CXCR2 co-localizes with IQGAP1 at the leading edge of polarized human neutrophils and CXCR2 expressing differentiated HL-60 cells. Moreover, amino acids 1-160 of IQGAP1 directly interact with the carboxyl-terminal domain of CXCR2 and stimulation with CXCL8 enhances IQGAP1 association with Cdc42.
Conclusions: Our studies indicate that IQGAP1 is a novel essential component of the CXCR2 "chemosynapse".
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158102 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023813 | PLOS |
J Orthop Res
January 2025
Department of East Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China.
Ewing sarcoma (ES) is a malignant bone tumor prevalent among children and adolescents. Disulfidptosis represents a novel form of cell death; however, the mechanism of disulfidptosis in ES remains unclear. Our aim is to explore the disulfidptosis-related prognostic signature in ES.
View Article and Find Full Text PDFCancer Lett
October 2024
Medical College, Yangzhou University, Yangzhou, China; Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China; Yangzhou Key Laboratory of Thoracic and Cardiac Surgery, Yangzhou, China. Electronic address:
Abnormal metabolism has emerged as a prominent hallmark of cancer and plays a pivotal role in carcinogenesis and progression of lung adenocarcinoma (LUAD). In this study, single-cell sequencing revealed that the metabolic enzyme 6-phosphogluconate dehydrogenase (PGD), which is a critical regulator of the pentose phosphate pathway (PPP), is significantly upregulated in the malignant epithelial cell subpopulation during malignant progression. However, the precise functional significance of PGD in LUAD and its underlying mechanisms remain elusive.
View Article and Find Full Text PDFTransl Oncol
November 2024
Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China. Electronic address:
The onset of drug resistance in advanced cancer patients markedly diminishes their prognosis. Recently, disulfidptosis, a novel form of cell death, has been identified, triggered by excessive disulfide formation leading to cell shrinkage and F-actin contraction. Previous studies have identified 15 essential genes (FLNA, FLNB, MYH9, TLN1, ACTB, MYL6, MYH10, CAPZB, DSTN, IQGAP1, ACTN4, PDLIM1, CD2AP, INF2, SLC7A11) associated with disulfidptosis.
View Article and Find Full Text PDFBrain Sci
June 2024
Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
Gene expression alterations in postmortem schizophrenia tissue are well-documented and are influenced by genetic, medication, and epigenetic factors. The Wingless/Integrated (WNT) signaling pathway, critical for cell growth and development, is involved in various cellular processes including neurodevelopment and synaptic plasticity. Despite its importance, WNT signaling remains understudied in schizophrenia, a disorder characterized by metabolic and bioenergetic defects in cortical regions.
View Article and Find Full Text PDFJ Biol Eng
July 2024
Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
Background: Endometriosis (EMs) is an enigmatic disease of yet-unknown pathogenesis. Disulfidptosis, a novel identified form of programmed cell death resulting from disulfide stress, stands a chance of treating diverse ailments. However, the potential roles of disulfidptosis-related genes (DRGs) in EMs remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.