The crucial early stages of amyloid growth, in which normally soluble proteins are converted into fibrillar nanostructures, are challenging to study using conventional techniques yet are critical to the protein aggregation phenomena implicated in many common pathologies. As with all nucleation and growth phenomena, it is difficult to track individual nuclei in traditional macroscopic experiments, which probe the overall temporal evolution of the sample, but do not yield detailed information on the primary nucleation step as they mix independent stochastic events into an ensemble measurement. To overcome this limitation, we have developed microdroplet assays enabling us to detect single primary nucleation events and to monitor their subsequent spatial as well as temporal evolution, both of which we find to be determined by secondary nucleation phenomena. By deforming the droplets to high aspect ratio, we visualize in real-time propagating waves of protein assembly emanating from discrete primary nucleation sites. We show that, in contrast to classical gelation phenomena, the primary nucleation step is characterized by a striking dependence on system size, and the filamentous protein self-assembly process involves a highly nonuniform spatial distribution of aggregates. These findings deviate markedly from the current picture of amyloid growth and uncover a general driving force, originating from confinement, which, together with biological quality control mechanisms, helps proteins remain soluble and therefore functional in nature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169119 | PMC |
http://dx.doi.org/10.1073/pnas.1105555108 | DOI Listing |
Bioinformatics
January 2025
Department of Robotics & Mechatronics Engineering, DGIST, Daegu, 42988, South Korea.
Motivation: Skeletal muscle cells (skMCs) combine together to create long, multi-nucleated structures called myotubes. By studying the size, length, and number of nuclei in these myotubes, we can gain a deeper understanding of skeletal muscle development. However, human experimenters may often derive unreliable results owing to the unusual shape of the myotube, which causes significant measurement variability.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
The assembly of repressive heterochromatin in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA-based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeats are transcribed has been unclear.
View Article and Find Full Text PDFCell Rep
December 2024
Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France. Electronic address:
Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC).
View Article and Find Full Text PDFSmall
December 2024
Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab, 140306, India.
Dynamic peptide networks represent an attractive structural space of supramolecular polymers in the realm of emergent complexity. Point mutations in the peptide sequence exert profound effects over the landscapes of self-assembly with an intricate interplay among the structure-function relationships. Herein, the pathway complexity of an arginine-rich peptide is studied, FmocVFFARR derived by the mutation of minimalist amyloid-inspired peptide amphiphile FmocVFFAKK, thereby focusing on its pathway-dependent self-assembly behavior.
View Article and Find Full Text PDFJHEP Rep
January 2025
Hepatitis Viruses and Pathobiology of Chronic Liver Diseases - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon - Hepatology Institute of Lyon F - IHU EVEREST, University of Lyon 1, ISPB, France, CNRS UMR5286, Centre Léon, Lyon, France.
Background & Aims: Owing to unexplained interpatient variation and treatment failure in hepatocellular carcinoma (HCC), novel therapeutic approaches remain an urgent clinical need. Hepatic neurons, belonging to the autonomic nervous system (ANS), mediate liver/whole body crosstalk. Pathological innervation of the ANS has been identified in cancer, nurturing tumor stroma and conferring stronger carcinogenic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!