Cortical areas that directly receive sensory inputs from the thalamus were long thought to be exclusively dedicated to a single modality, originating separate labeled lines. In the past decade, however, several independent lines of research have demonstrated cross-modal responses in primary sensory areas. To investigate whether these responses represent behaviorally relevant information, we carried out neuronal recordings in the primary somatosensory cortex (S1) and primary visual cortex (V1) of rats as they performed whisker-based tasks in the dark. During the free exploration of novel objects, V1 and S1 responses carried comparable amounts of information about object identity. During execution of an aperture tactile discrimination task, tactile recruitment was slower and less robust in V1 than in S1. However, V1 tactile responses correlated significantly with performance across sessions. Altogether, the results support the notion that primary sensory areas have a preference for a given modality but can engage in meaningful cross-modal processing depending on task demand.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174625 | PMC |
http://dx.doi.org/10.1073/pnas.1102780108 | DOI Listing |
Int J Mol Sci
January 2025
School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China.
Due to advances in big data technology, deep learning, and knowledge engineering, biological sequence visualization has been extensively explored. In the post-genome era, biological sequence visualization enables the visual representation of both structured and unstructured biological sequence data. However, a universal visualization method for all types of sequences has not been reported.
View Article and Find Full Text PDFBiol Psychol
January 2025
Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA. Electronic address:
We examined differences in physiological responses to aversive and non-aversive naturalistic audiovisual stimuli and their auditory and visual components within the same experiment. We recorded five physiological measures that have been shown to be sensitive to affect: electrocardiogram, electromyography (EMG) for zygomaticus major and corrugator supercilii muscles, electrodermal activity (EDA), and skin temperature. Valence and arousal ratings confirmed that aversive stimuli were more negative in valence and higher in arousal than non-aversive stimuli.
View Article and Find Full Text PDFBiol Psychol
January 2025
Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
Audiovisual associative memory and audiovisual integration involve common behavioral processing components and significantly overlap in their neural mechanisms. This suggests that training on audiovisual associative memory may have the potential to improve audiovisual integration. The current study tested this hypothesis by applying a 2 (group: audiovisual training group, unimodal control group) * 2 (time: pretest, posttest) design.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
Recognition plays a key role in the social lives of gregarious species, enabling animals to distinguish among social partners and tailor their behaviour accordingly. As domesticated animals regularly interact with humans, as well as members of their own species, we might expect mechanisms used to discriminate between conspecifics to also apply to humans. Given that goats can combine visual and vocal cues to recognise one another, we investigated whether this cross-modal recognition extends to discriminating among familiar humans.
View Article and Find Full Text PDFNeural Netw
January 2025
Harbin University of Science and Technology, Harbin, 150006, China.
Temporal Multi-Modal Knowledge Graphs (TMMKGs) can be regarded as a synthesis of Temporal Knowledge Graphs (TKGs) and Multi-Modal Knowledge Graphs (MMKGs), combining the characteristics of both. TMMKGs can effectively model dynamic real-world phenomena, particularly in scenarios involving multiple heterogeneous information sources and time series characteristics, such as e-commerce websites, scene recording data, and intelligent transportation systems. We propose a Temporal Multi-Modal Knowledge Graph Generation (TMMKGG) method that can automatically construct TMMKGs, aiming to reduce construction costs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!