Integrase is an essential enzyme in the life cycle of Human immunoficiency virus type 1 (HIV-1) and also an important target for designing integrase inhibitors. In this paper, the binding modes between the wild type integrase core domain (ICD) and the W131A mutant ICD with the benzoic acid derivative--D77 were investigated using the molecular docking combined with molecular dynamics (MD) simulations. The result of MD simulations showed that the W131A substitution affected the flexibility of the region 150-167 in both the monomer A and B of the mutant type ICD. In principle, D77 interacted with the residues around the Lens Epithelium-Derived Growth Factor (LEDGF/p75) binding site which is nearby the HIV-1 integrase dimer interface. However, the specific binding modes for D77-wild type integrase and D77-mutant integrase systems are various. According to the binding mode of D77 with the wild type ICD, D77 can effectively intervene with the binding of LEDGF/p75 to integrase due to a steric hindrance effect around the LEDGF/p75 binding site. In addition, we found that D77 might also affect its inhibitory action by reducing the flexibility of the region 150-167 of integrase. Through energy decomposition calculated with the Molecular Mechanics Generalized Born Surface Area approach to estimate the binding affinity, it seems likely that W131 and E170 are indispensable for the ligand binding, as characterized by the largest binding affinity. All the above results are consistent with the experimental data, providing us with some helpful information not only for the understanding of the mechanism of this kind of inhibitor but also for the rational drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2011.10507387DOI Listing

Publication Analysis

Top Keywords

binding
10
integrase
9
binding mode
8
mode d77
8
hiv-1 integrase
8
binding modes
8
wild type
8
type integrase
8
flexibility region
8
region 150-167
8

Similar Publications

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Alopecia areata (AA) is an autoimmune condition marked by hair loss, linked to inflammatory processes involving the interleukin-1 receptor type 1 (IL-1R1) pathway. This study aims to explore the relationship between IL-1R1 gene expression, serum IL-1R1 levels, and hsa-miR-19b-3p in relation to AA severity. Using a case-control design, we assessed 100 AA patients and 100 healthy controls, measuring serum IL-1R1 through enzyme-linked immunosorbent assay (ELISA) and analyzing IL-1R1 gene and hsa-miR-19b-3p expression levels via quantitative real-time PCR (qRT-PCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!